MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdss Structured version   Visualization version   Unicode version

Theorem dprdss 18428
Description: Create a direct product by finding subgroups inside each factor of another direct product. (Contributed by Mario Carneiro, 25-Apr-2016.)
Hypotheses
Ref Expression
dprdss.1  |-  ( ph  ->  G dom DProd  T )
dprdss.2  |-  ( ph  ->  dom  T  =  I )
dprdss.3  |-  ( ph  ->  S : I --> (SubGrp `  G ) )
dprdss.4  |-  ( (
ph  /\  k  e.  I )  ->  ( S `  k )  C_  ( T `  k
) )
Assertion
Ref Expression
dprdss  |-  ( ph  ->  ( G dom DProd  S  /\  ( G DProd  S )  C_  ( G DProd  T ) ) )
Distinct variable groups:    k, G    ph, k    S, k    T, k   
k, I

Proof of Theorem dprdss
Dummy variables  f 
a  h  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . 3  |-  (Cntz `  G )  =  (Cntz `  G )
2 eqid 2622 . . 3  |-  ( 0g
`  G )  =  ( 0g `  G
)
3 eqid 2622 . . 3  |-  (mrCls `  (SubGrp `  G ) )  =  (mrCls `  (SubGrp `  G ) )
4 dprdss.1 . . . 4  |-  ( ph  ->  G dom DProd  T )
5 dprdgrp 18404 . . . 4  |-  ( G dom DProd  T  ->  G  e. 
Grp )
64, 5syl 17 . . 3  |-  ( ph  ->  G  e.  Grp )
7 dprdss.2 . . . 4  |-  ( ph  ->  dom  T  =  I )
84, 7dprddomcld 18400 . . 3  |-  ( ph  ->  I  e.  _V )
9 dprdss.3 . . 3  |-  ( ph  ->  S : I --> (SubGrp `  G ) )
10 dprdss.4 . . . . . . 7  |-  ( (
ph  /\  k  e.  I )  ->  ( S `  k )  C_  ( T `  k
) )
1110ralrimiva 2966 . . . . . 6  |-  ( ph  ->  A. k  e.  I 
( S `  k
)  C_  ( T `  k ) )
12 fveq2 6191 . . . . . . . 8  |-  ( k  =  x  ->  ( S `  k )  =  ( S `  x ) )
13 fveq2 6191 . . . . . . . 8  |-  ( k  =  x  ->  ( T `  k )  =  ( T `  x ) )
1412, 13sseq12d 3634 . . . . . . 7  |-  ( k  =  x  ->  (
( S `  k
)  C_  ( T `  k )  <->  ( S `  x )  C_  ( T `  x )
) )
1514rspcv 3305 . . . . . 6  |-  ( x  e.  I  ->  ( A. k  e.  I 
( S `  k
)  C_  ( T `  k )  ->  ( S `  x )  C_  ( T `  x
) ) )
1611, 15mpan9 486 . . . . 5  |-  ( (
ph  /\  x  e.  I )  ->  ( S `  x )  C_  ( T `  x
) )
17163ad2antr1 1226 . . . 4  |-  ( (
ph  /\  ( x  e.  I  /\  y  e.  I  /\  x  =/=  y ) )  -> 
( S `  x
)  C_  ( T `  x ) )
184adantr 481 . . . . . 6  |-  ( (
ph  /\  ( x  e.  I  /\  y  e.  I  /\  x  =/=  y ) )  ->  G dom DProd  T )
197adantr 481 . . . . . 6  |-  ( (
ph  /\  ( x  e.  I  /\  y  e.  I  /\  x  =/=  y ) )  ->  dom  T  =  I )
20 simpr1 1067 . . . . . 6  |-  ( (
ph  /\  ( x  e.  I  /\  y  e.  I  /\  x  =/=  y ) )  ->  x  e.  I )
21 simpr2 1068 . . . . . 6  |-  ( (
ph  /\  ( x  e.  I  /\  y  e.  I  /\  x  =/=  y ) )  -> 
y  e.  I )
22 simpr3 1069 . . . . . 6  |-  ( (
ph  /\  ( x  e.  I  /\  y  e.  I  /\  x  =/=  y ) )  ->  x  =/=  y )
2318, 19, 20, 21, 22, 1dprdcntz 18407 . . . . 5  |-  ( (
ph  /\  ( x  e.  I  /\  y  e.  I  /\  x  =/=  y ) )  -> 
( T `  x
)  C_  ( (Cntz `  G ) `  ( T `  y )
) )
244, 7dprdf2 18406 . . . . . . . . 9  |-  ( ph  ->  T : I --> (SubGrp `  G ) )
2524adantr 481 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  I  /\  y  e.  I  /\  x  =/=  y ) )  ->  T : I --> (SubGrp `  G ) )
2625, 21ffvelrnd 6360 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  I  /\  y  e.  I  /\  x  =/=  y ) )  -> 
( T `  y
)  e.  (SubGrp `  G ) )
27 eqid 2622 . . . . . . . 8  |-  ( Base `  G )  =  (
Base `  G )
2827subgss 17595 . . . . . . 7  |-  ( ( T `  y )  e.  (SubGrp `  G
)  ->  ( T `  y )  C_  ( Base `  G ) )
2926, 28syl 17 . . . . . 6  |-  ( (
ph  /\  ( x  e.  I  /\  y  e.  I  /\  x  =/=  y ) )  -> 
( T `  y
)  C_  ( Base `  G ) )
3011adantr 481 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  I  /\  y  e.  I  /\  x  =/=  y ) )  ->  A. k  e.  I 
( S `  k
)  C_  ( T `  k ) )
31 fveq2 6191 . . . . . . . . 9  |-  ( k  =  y  ->  ( S `  k )  =  ( S `  y ) )
32 fveq2 6191 . . . . . . . . 9  |-  ( k  =  y  ->  ( T `  k )  =  ( T `  y ) )
3331, 32sseq12d 3634 . . . . . . . 8  |-  ( k  =  y  ->  (
( S `  k
)  C_  ( T `  k )  <->  ( S `  y )  C_  ( T `  y )
) )
3433rspcv 3305 . . . . . . 7  |-  ( y  e.  I  ->  ( A. k  e.  I 
( S `  k
)  C_  ( T `  k )  ->  ( S `  y )  C_  ( T `  y
) ) )
3521, 30, 34sylc 65 . . . . . 6  |-  ( (
ph  /\  ( x  e.  I  /\  y  e.  I  /\  x  =/=  y ) )  -> 
( S `  y
)  C_  ( T `  y ) )
3627, 1cntz2ss 17765 . . . . . 6  |-  ( ( ( T `  y
)  C_  ( Base `  G )  /\  ( S `  y )  C_  ( T `  y
) )  ->  (
(Cntz `  G ) `  ( T `  y
) )  C_  (
(Cntz `  G ) `  ( S `  y
) ) )
3729, 35, 36syl2anc 693 . . . . 5  |-  ( (
ph  /\  ( x  e.  I  /\  y  e.  I  /\  x  =/=  y ) )  -> 
( (Cntz `  G
) `  ( T `  y ) )  C_  ( (Cntz `  G ) `  ( S `  y
) ) )
3823, 37sstrd 3613 . . . 4  |-  ( (
ph  /\  ( x  e.  I  /\  y  e.  I  /\  x  =/=  y ) )  -> 
( T `  x
)  C_  ( (Cntz `  G ) `  ( S `  y )
) )
3917, 38sstrd 3613 . . 3  |-  ( (
ph  /\  ( x  e.  I  /\  y  e.  I  /\  x  =/=  y ) )  -> 
( S `  x
)  C_  ( (Cntz `  G ) `  ( S `  y )
) )
406adantr 481 . . . . . . 7  |-  ( (
ph  /\  x  e.  I )  ->  G  e.  Grp )
4127subgacs 17629 . . . . . . 7  |-  ( G  e.  Grp  ->  (SubGrp `  G )  e.  (ACS
`  ( Base `  G
) ) )
42 acsmre 16313 . . . . . . 7  |-  ( (SubGrp `  G )  e.  (ACS
`  ( Base `  G
) )  ->  (SubGrp `  G )  e.  (Moore `  ( Base `  G
) ) )
4340, 41, 423syl 18 . . . . . 6  |-  ( (
ph  /\  x  e.  I )  ->  (SubGrp `  G )  e.  (Moore `  ( Base `  G
) ) )
44 difss 3737 . . . . . . . . 9  |-  ( I 
\  { x }
)  C_  I
4511adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  I )  ->  A. k  e.  I  ( S `  k )  C_  ( T `  k )
)
46 ssralv 3666 . . . . . . . . 9  |-  ( ( I  \  { x } )  C_  I  ->  ( A. k  e.  I  ( S `  k )  C_  ( T `  k )  ->  A. k  e.  ( I  \  { x } ) ( S `
 k )  C_  ( T `  k ) ) )
4744, 45, 46mpsyl 68 . . . . . . . 8  |-  ( (
ph  /\  x  e.  I )  ->  A. k  e.  ( I  \  {
x } ) ( S `  k ) 
C_  ( T `  k ) )
48 ss2iun 4536 . . . . . . . 8  |-  ( A. k  e.  ( I  \  { x } ) ( S `  k
)  C_  ( T `  k )  ->  U_ k  e.  ( I  \  {
x } ) ( S `  k ) 
C_  U_ k  e.  ( I  \  { x } ) ( T `
 k ) )
4947, 48syl 17 . . . . . . 7  |-  ( (
ph  /\  x  e.  I )  ->  U_ k  e.  ( I  \  {
x } ) ( S `  k ) 
C_  U_ k  e.  ( I  \  { x } ) ( T `
 k ) )
509adantr 481 . . . . . . . 8  |-  ( (
ph  /\  x  e.  I )  ->  S : I --> (SubGrp `  G ) )
51 ffun 6048 . . . . . . . 8  |-  ( S : I --> (SubGrp `  G )  ->  Fun  S )
52 funiunfv 6506 . . . . . . . 8  |-  ( Fun 
S  ->  U_ k  e.  ( I  \  {
x } ) ( S `  k )  =  U. ( S
" ( I  \  { x } ) ) )
5350, 51, 523syl 18 . . . . . . 7  |-  ( (
ph  /\  x  e.  I )  ->  U_ k  e.  ( I  \  {
x } ) ( S `  k )  =  U. ( S
" ( I  \  { x } ) ) )
5424adantr 481 . . . . . . . 8  |-  ( (
ph  /\  x  e.  I )  ->  T : I --> (SubGrp `  G ) )
55 ffun 6048 . . . . . . . 8  |-  ( T : I --> (SubGrp `  G )  ->  Fun  T )
56 funiunfv 6506 . . . . . . . 8  |-  ( Fun 
T  ->  U_ k  e.  ( I  \  {
x } ) ( T `  k )  =  U. ( T
" ( I  \  { x } ) ) )
5754, 55, 563syl 18 . . . . . . 7  |-  ( (
ph  /\  x  e.  I )  ->  U_ k  e.  ( I  \  {
x } ) ( T `  k )  =  U. ( T
" ( I  \  { x } ) ) )
5849, 53, 573sstr3d 3647 . . . . . 6  |-  ( (
ph  /\  x  e.  I )  ->  U. ( S " ( I  \  { x } ) )  C_  U. ( T " ( I  \  { x } ) ) )
59 imassrn 5477 . . . . . . . 8  |-  ( T
" ( I  \  { x } ) )  C_  ran  T
60 frn 6053 . . . . . . . . . 10  |-  ( T : I --> (SubGrp `  G )  ->  ran  T 
C_  (SubGrp `  G )
)
6154, 60syl 17 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  I )  ->  ran  T 
C_  (SubGrp `  G )
)
62 mresspw 16252 . . . . . . . . . 10  |-  ( (SubGrp `  G )  e.  (Moore `  ( Base `  G
) )  ->  (SubGrp `  G )  C_  ~P ( Base `  G )
)
6343, 62syl 17 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  I )  ->  (SubGrp `  G )  C_  ~P ( Base `  G )
)
6461, 63sstrd 3613 . . . . . . . 8  |-  ( (
ph  /\  x  e.  I )  ->  ran  T 
C_  ~P ( Base `  G
) )
6559, 64syl5ss 3614 . . . . . . 7  |-  ( (
ph  /\  x  e.  I )  ->  ( T " ( I  \  { x } ) )  C_  ~P ( Base `  G ) )
66 sspwuni 4611 . . . . . . 7  |-  ( ( T " ( I 
\  { x }
) )  C_  ~P ( Base `  G )  <->  U. ( T " (
I  \  { x } ) )  C_  ( Base `  G )
)
6765, 66sylib 208 . . . . . 6  |-  ( (
ph  /\  x  e.  I )  ->  U. ( T " ( I  \  { x } ) )  C_  ( Base `  G ) )
6843, 3, 58, 67mrcssd 16284 . . . . 5  |-  ( (
ph  /\  x  e.  I )  ->  (
(mrCls `  (SubGrp `  G
) ) `  U. ( S " ( I 
\  { x }
) ) )  C_  ( (mrCls `  (SubGrp `  G
) ) `  U. ( T " ( I 
\  { x }
) ) ) )
69 ss2in 3840 . . . . 5  |-  ( ( ( S `  x
)  C_  ( T `  x )  /\  (
(mrCls `  (SubGrp `  G
) ) `  U. ( S " ( I 
\  { x }
) ) )  C_  ( (mrCls `  (SubGrp `  G
) ) `  U. ( T " ( I 
\  { x }
) ) ) )  ->  ( ( S `
 x )  i^i  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " (
I  \  { x } ) ) ) )  C_  ( ( T `  x )  i^i  ( (mrCls `  (SubGrp `  G ) ) `  U. ( T " (
I  \  { x } ) ) ) ) )
7016, 68, 69syl2anc 693 . . . 4  |-  ( (
ph  /\  x  e.  I )  ->  (
( S `  x
)  i^i  ( (mrCls `  (SubGrp `  G )
) `  U. ( S
" ( I  \  { x } ) ) ) )  C_  ( ( T `  x )  i^i  (
(mrCls `  (SubGrp `  G
) ) `  U. ( T " ( I 
\  { x }
) ) ) ) )
714adantr 481 . . . . 5  |-  ( (
ph  /\  x  e.  I )  ->  G dom DProd  T )
727adantr 481 . . . . 5  |-  ( (
ph  /\  x  e.  I )  ->  dom  T  =  I )
73 simpr 477 . . . . 5  |-  ( (
ph  /\  x  e.  I )  ->  x  e.  I )
7471, 72, 73, 2, 3dprddisj 18408 . . . 4  |-  ( (
ph  /\  x  e.  I )  ->  (
( T `  x
)  i^i  ( (mrCls `  (SubGrp `  G )
) `  U. ( T
" ( I  \  { x } ) ) ) )  =  { ( 0g `  G ) } )
7570, 74sseqtrd 3641 . . 3  |-  ( (
ph  /\  x  e.  I )  ->  (
( S `  x
)  i^i  ( (mrCls `  (SubGrp `  G )
) `  U. ( S
" ( I  \  { x } ) ) ) )  C_  { ( 0g `  G
) } )
761, 2, 3, 6, 8, 9, 39, 75dmdprdd 18398 . 2  |-  ( ph  ->  G dom DProd  S )
774a1d 25 . . . . 5  |-  ( ph  ->  ( G dom DProd  S  ->  G dom DProd  T ) )
78 ss2ixp 7921 . . . . . . 7  |-  ( A. k  e.  I  ( S `  k )  C_  ( T `  k
)  ->  X_ k  e.  I  ( S `  k )  C_  X_ k  e.  I  ( T `  k ) )
7911, 78syl 17 . . . . . 6  |-  ( ph  -> 
X_ k  e.  I 
( S `  k
)  C_  X_ k  e.  I  ( T `  k ) )
80 rabss2 3685 . . . . . 6  |-  ( X_ k  e.  I  ( S `  k )  C_  X_ k  e.  I 
( T `  k
)  ->  { h  e.  X_ k  e.  I 
( S `  k
)  |  h finSupp  ( 0g `  G ) } 
C_  { h  e.  X_ k  e.  I 
( T `  k
)  |  h finSupp  ( 0g `  G ) } )
81 ssrexv 3667 . . . . . 6  |-  ( { h  e.  X_ k  e.  I  ( S `  k )  |  h finSupp 
( 0g `  G
) }  C_  { h  e.  X_ k  e.  I 
( T `  k
)  |  h finSupp  ( 0g `  G ) }  ->  ( E. f  e.  { h  e.  X_ k  e.  I  ( S `  k )  |  h finSupp  ( 0g `  G ) } a  =  ( G  gsumg  f )  ->  E. f  e.  {
h  e.  X_ k  e.  I  ( T `  k )  |  h finSupp 
( 0g `  G
) } a  =  ( G  gsumg  f ) ) )
8279, 80, 813syl 18 . . . . 5  |-  ( ph  ->  ( E. f  e. 
{ h  e.  X_ k  e.  I  ( S `  k )  |  h finSupp  ( 0g `  G ) } a  =  ( G  gsumg  f )  ->  E. f  e.  {
h  e.  X_ k  e.  I  ( T `  k )  |  h finSupp 
( 0g `  G
) } a  =  ( G  gsumg  f ) ) )
8377, 82anim12d 586 . . . 4  |-  ( ph  ->  ( ( G dom DProd  S  /\  E. f  e. 
{ h  e.  X_ k  e.  I  ( S `  k )  |  h finSupp  ( 0g `  G ) } a  =  ( G  gsumg  f ) )  ->  ( G dom DProd  T  /\  E. f  e.  { h  e.  X_ k  e.  I  ( T `  k )  |  h finSupp  ( 0g `  G ) } a  =  ( G  gsumg  f ) ) ) )
84 fdm 6051 . . . . 5  |-  ( S : I --> (SubGrp `  G )  ->  dom  S  =  I )
85 eqid 2622 . . . . . 6  |-  { h  e.  X_ k  e.  I 
( S `  k
)  |  h finSupp  ( 0g `  G ) }  =  { h  e.  X_ k  e.  I 
( S `  k
)  |  h finSupp  ( 0g `  G ) }
862, 85eldprd 18403 . . . . 5  |-  ( dom 
S  =  I  -> 
( a  e.  ( G DProd  S )  <->  ( G dom DProd  S  /\  E. f  e.  { h  e.  X_ k  e.  I  ( S `  k )  |  h finSupp  ( 0g `  G ) } a  =  ( G  gsumg  f ) ) ) )
879, 84, 863syl 18 . . . 4  |-  ( ph  ->  ( a  e.  ( G DProd  S )  <->  ( G dom DProd  S  /\  E. f  e.  { h  e.  X_ k  e.  I  ( S `  k )  |  h finSupp  ( 0g `  G ) } a  =  ( G  gsumg  f ) ) ) )
88 eqid 2622 . . . . . 6  |-  { h  e.  X_ k  e.  I 
( T `  k
)  |  h finSupp  ( 0g `  G ) }  =  { h  e.  X_ k  e.  I 
( T `  k
)  |  h finSupp  ( 0g `  G ) }
892, 88eldprd 18403 . . . . 5  |-  ( dom 
T  =  I  -> 
( a  e.  ( G DProd  T )  <->  ( G dom DProd  T  /\  E. f  e.  { h  e.  X_ k  e.  I  ( T `  k )  |  h finSupp  ( 0g `  G ) } a  =  ( G  gsumg  f ) ) ) )
907, 89syl 17 . . . 4  |-  ( ph  ->  ( a  e.  ( G DProd  T )  <->  ( G dom DProd  T  /\  E. f  e.  { h  e.  X_ k  e.  I  ( T `  k )  |  h finSupp  ( 0g `  G ) } a  =  ( G  gsumg  f ) ) ) )
9183, 87, 903imtr4d 283 . . 3  |-  ( ph  ->  ( a  e.  ( G DProd  S )  -> 
a  e.  ( G DProd 
T ) ) )
9291ssrdv 3609 . 2  |-  ( ph  ->  ( G DProd  S ) 
C_  ( G DProd  T
) )
9376, 92jca 554 1  |-  ( ph  ->  ( G dom DProd  S  /\  ( G DProd  S )  C_  ( G DProd  T ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   {crab 2916   _Vcvv 3200    \ cdif 3571    i^i cin 3573    C_ wss 3574   ~Pcpw 4158   {csn 4177   U.cuni 4436   U_ciun 4520   class class class wbr 4653   dom cdm 5114   ran crn 5115   "cima 5117   Fun wfun 5882   -->wf 5884   ` cfv 5888  (class class class)co 6650   X_cixp 7908   finSupp cfsupp 8275   Basecbs 15857   0gc0g 16100    gsumg cgsu 16101  Moorecmre 16242  mrClscmrc 16243  ACScacs 16245   Grpcgrp 17422  SubGrpcsubg 17588  Cntzccntz 17748   DProd cdprd 18392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-subg 17591  df-cntz 17750  df-dprd 18394
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator