MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdfeq0 Structured version   Visualization version   Unicode version

Theorem dprdfeq0 18421
Description: The zero function is the only function that sums to zero in a direct product. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 14-Jul-2019.)
Hypotheses
Ref Expression
eldprdi.0  |-  .0.  =  ( 0g `  G )
eldprdi.w  |-  W  =  { h  e.  X_ i  e.  I  ( S `  i )  |  h finSupp  .0.  }
eldprdi.1  |-  ( ph  ->  G dom DProd  S )
eldprdi.2  |-  ( ph  ->  dom  S  =  I )
eldprdi.3  |-  ( ph  ->  F  e.  W )
Assertion
Ref Expression
dprdfeq0  |-  ( ph  ->  ( ( G  gsumg  F )  =  .0.  <->  F  =  ( x  e.  I  |->  .0.  ) ) )
Distinct variable groups:    x, h, F    h, i, G, x   
h, I, i, x    ph, x    .0. , h, x    S, h, i, x
Allowed substitution hints:    ph( h, i)    F( i)    W( x, h, i)    .0. ( i)

Proof of Theorem dprdfeq0
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eldprdi.w . . . . . . 7  |-  W  =  { h  e.  X_ i  e.  I  ( S `  i )  |  h finSupp  .0.  }
2 eldprdi.1 . . . . . . 7  |-  ( ph  ->  G dom DProd  S )
3 eldprdi.2 . . . . . . 7  |-  ( ph  ->  dom  S  =  I )
4 eldprdi.3 . . . . . . 7  |-  ( ph  ->  F  e.  W )
5 eqid 2622 . . . . . . 7  |-  ( Base `  G )  =  (
Base `  G )
61, 2, 3, 4, 5dprdff 18411 . . . . . 6  |-  ( ph  ->  F : I --> ( Base `  G ) )
76feqmptd 6249 . . . . 5  |-  ( ph  ->  F  =  ( x  e.  I  |->  ( F `
 x ) ) )
87adantr 481 . . . 4  |-  ( (
ph  /\  ( G  gsumg  F )  =  .0.  )  ->  F  =  ( x  e.  I  |->  ( F `
 x ) ) )
91, 2, 3, 4dprdfcl 18412 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  I )  ->  ( F `  x )  e.  ( S `  x
) )
109adantlr 751 . . . . . . . 8  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  ( F `  x )  e.  ( S `  x
) )
11 eldprdi.0 . . . . . . . . . . . 12  |-  .0.  =  ( 0g `  G )
122ad2antrr 762 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  G dom DProd  S )
133ad2antrr 762 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  dom  S  =  I )
14 simpr 477 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  x  e.  I )
15 eqid 2622 . . . . . . . . . . . . . 14  |-  ( y  e.  I  |->  if ( y  =  x ,  ( F `  x
) ,  .0.  )
)  =  ( y  e.  I  |->  if ( y  =  x ,  ( F `  x
) ,  .0.  )
)
1611, 1, 12, 13, 14, 10, 15dprdfid 18416 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  (
( y  e.  I  |->  if ( y  =  x ,  ( F `
 x ) ,  .0.  ) )  e.  W  /\  ( G 
gsumg  ( y  e.  I  |->  if ( y  =  x ,  ( F `
 x ) ,  .0.  ) ) )  =  ( F `  x ) ) )
1716simpld 475 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  (
y  e.  I  |->  if ( y  =  x ,  ( F `  x ) ,  .0.  ) )  e.  W
)
184ad2antrr 762 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  F  e.  W )
19 eqid 2622 . . . . . . . . . . . 12  |-  ( -g `  G )  =  (
-g `  G )
2011, 1, 12, 13, 17, 18, 19dprdfsub 18420 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  (
( ( y  e.  I  |->  if ( y  =  x ,  ( F `  x ) ,  .0.  ) )  oF ( -g `  G ) F )  e.  W  /\  ( G  gsumg  ( ( y  e.  I  |->  if ( y  =  x ,  ( F `  x ) ,  .0.  ) )  oF ( -g `  G ) F ) )  =  ( ( G  gsumg  ( y  e.  I  |->  if ( y  =  x ,  ( F `
 x ) ,  .0.  ) ) ) ( -g `  G
) ( G  gsumg  F ) ) ) )
2120simprd 479 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  ( G  gsumg  ( ( y  e.  I  |->  if ( y  =  x ,  ( F `  x ) ,  .0.  ) )  oF ( -g `  G ) F ) )  =  ( ( G  gsumg  ( y  e.  I  |->  if ( y  =  x ,  ( F `
 x ) ,  .0.  ) ) ) ( -g `  G
) ( G  gsumg  F ) ) )
222, 3dprddomcld 18400 . . . . . . . . . . . . 13  |-  ( ph  ->  I  e.  _V )
2322ad2antrr 762 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  I  e.  _V )
24 fvex 6201 . . . . . . . . . . . . . 14  |-  ( F `
 x )  e. 
_V
25 fvex 6201 . . . . . . . . . . . . . . 15  |-  ( 0g
`  G )  e. 
_V
2611, 25eqeltri 2697 . . . . . . . . . . . . . 14  |-  .0.  e.  _V
2724, 26ifex 4156 . . . . . . . . . . . . 13  |-  if ( y  =  x ,  ( F `  x
) ,  .0.  )  e.  _V
2827a1i 11 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  /\  y  e.  I )  ->  if ( y  =  x ,  ( F `  x ) ,  .0.  )  e.  _V )
29 fvexd 6203 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  /\  y  e.  I )  ->  ( F `  y )  e.  _V )
30 eqidd 2623 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  (
y  e.  I  |->  if ( y  =  x ,  ( F `  x ) ,  .0.  ) )  =  ( y  e.  I  |->  if ( y  =  x ,  ( F `  x ) ,  .0.  ) ) )
316ad2antrr 762 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  F : I --> ( Base `  G ) )
3231feqmptd 6249 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  F  =  ( y  e.  I  |->  ( F `  y ) ) )
3323, 28, 29, 30, 32offval2 6914 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  (
( y  e.  I  |->  if ( y  =  x ,  ( F `
 x ) ,  .0.  ) )  oF ( -g `  G
) F )  =  ( y  e.  I  |->  ( if ( y  =  x ,  ( F `  x ) ,  .0.  ) (
-g `  G )
( F `  y
) ) ) )
3433oveq2d 6666 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  ( G  gsumg  ( ( y  e.  I  |->  if ( y  =  x ,  ( F `  x ) ,  .0.  ) )  oF ( -g `  G ) F ) )  =  ( G 
gsumg  ( y  e.  I  |->  ( if ( y  =  x ,  ( F `  x ) ,  .0.  ) (
-g `  G )
( F `  y
) ) ) ) )
3516simprd 479 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  ( G  gsumg  ( y  e.  I  |->  if ( y  =  x ,  ( F `
 x ) ,  .0.  ) ) )  =  ( F `  x ) )
36 simplr 792 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  ( G  gsumg  F )  =  .0.  )
3735, 36oveq12d 6668 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  (
( G  gsumg  ( y  e.  I  |->  if ( y  =  x ,  ( F `
 x ) ,  .0.  ) ) ) ( -g `  G
) ( G  gsumg  F ) )  =  ( ( F `  x ) ( -g `  G
)  .0.  ) )
38 dprdgrp 18404 . . . . . . . . . . . . 13  |-  ( G dom DProd  S  ->  G  e. 
Grp )
3912, 38syl 17 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  G  e.  Grp )
4031, 14ffvelrnd 6360 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  ( F `  x )  e.  ( Base `  G
) )
415, 11, 19grpsubid1 17500 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  ( F `  x )  e.  ( Base `  G
) )  ->  (
( F `  x
) ( -g `  G
)  .0.  )  =  ( F `  x
) )
4239, 40, 41syl2anc 693 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  (
( F `  x
) ( -g `  G
)  .0.  )  =  ( F `  x
) )
4337, 42eqtrd 2656 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  (
( G  gsumg  ( y  e.  I  |->  if ( y  =  x ,  ( F `
 x ) ,  .0.  ) ) ) ( -g `  G
) ( G  gsumg  F ) )  =  ( F `
 x ) )
4421, 34, 433eqtr3d 2664 . . . . . . . . 9  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  ( G  gsumg  ( y  e.  I  |->  ( if ( y  =  x ,  ( F `  x ) ,  .0.  ) (
-g `  G )
( F `  y
) ) ) )  =  ( F `  x ) )
45 eqid 2622 . . . . . . . . . 10  |-  (Cntz `  G )  =  (Cntz `  G )
46 grpmnd 17429 . . . . . . . . . . . 12  |-  ( G  e.  Grp  ->  G  e.  Mnd )
472, 38, 463syl 18 . . . . . . . . . . 11  |-  ( ph  ->  G  e.  Mnd )
4847ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  G  e.  Mnd )
495subgacs 17629 . . . . . . . . . . . . 13  |-  ( G  e.  Grp  ->  (SubGrp `  G )  e.  (ACS
`  ( Base `  G
) ) )
50 acsmre 16313 . . . . . . . . . . . . 13  |-  ( (SubGrp `  G )  e.  (ACS
`  ( Base `  G
) )  ->  (SubGrp `  G )  e.  (Moore `  ( Base `  G
) ) )
5139, 49, 503syl 18 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  (SubGrp `  G )  e.  (Moore `  ( Base `  G
) ) )
52 imassrn 5477 . . . . . . . . . . . . . 14  |-  ( S
" ( I  \  { x } ) )  C_  ran  S
532, 3dprdf2 18406 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  S : I --> (SubGrp `  G ) )
5453ad2antrr 762 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  S : I --> (SubGrp `  G ) )
55 frn 6053 . . . . . . . . . . . . . . . 16  |-  ( S : I --> (SubGrp `  G )  ->  ran  S 
C_  (SubGrp `  G )
)
5654, 55syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  ran  S 
C_  (SubGrp `  G )
)
57 mresspw 16252 . . . . . . . . . . . . . . . 16  |-  ( (SubGrp `  G )  e.  (Moore `  ( Base `  G
) )  ->  (SubGrp `  G )  C_  ~P ( Base `  G )
)
5851, 57syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  (SubGrp `  G )  C_  ~P ( Base `  G )
)
5956, 58sstrd 3613 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  ran  S 
C_  ~P ( Base `  G
) )
6052, 59syl5ss 3614 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  ( S " ( I  \  { x } ) )  C_  ~P ( Base `  G ) )
61 sspwuni 4611 . . . . . . . . . . . . 13  |-  ( ( S " ( I 
\  { x }
) )  C_  ~P ( Base `  G )  <->  U. ( S " (
I  \  { x } ) )  C_  ( Base `  G )
)
6260, 61sylib 208 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  U. ( S " ( I  \  { x } ) )  C_  ( Base `  G ) )
63 eqid 2622 . . . . . . . . . . . . 13  |-  (mrCls `  (SubGrp `  G ) )  =  (mrCls `  (SubGrp `  G ) )
6463mrccl 16271 . . . . . . . . . . . 12  |-  ( ( (SubGrp `  G )  e.  (Moore `  ( Base `  G ) )  /\  U. ( S " (
I  \  { x } ) )  C_  ( Base `  G )
)  ->  ( (mrCls `  (SubGrp `  G )
) `  U. ( S
" ( I  \  { x } ) ) )  e.  (SubGrp `  G ) )
6551, 62, 64syl2anc 693 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  (
(mrCls `  (SubGrp `  G
) ) `  U. ( S " ( I 
\  { x }
) ) )  e.  (SubGrp `  G )
)
66 subgsubm 17616 . . . . . . . . . . 11  |-  ( ( (mrCls `  (SubGrp `  G
) ) `  U. ( S " ( I 
\  { x }
) ) )  e.  (SubGrp `  G )  ->  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " (
I  \  { x } ) ) )  e.  (SubMnd `  G
) )
6765, 66syl 17 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  (
(mrCls `  (SubGrp `  G
) ) `  U. ( S " ( I 
\  { x }
) ) )  e.  (SubMnd `  G )
)
68 oveq1 6657 . . . . . . . . . . . . 13  |-  ( ( F `  x )  =  if ( y  =  x ,  ( F `  x ) ,  .0.  )  -> 
( ( F `  x ) ( -g `  G ) ( F `
 y ) )  =  ( if ( y  =  x ,  ( F `  x
) ,  .0.  )
( -g `  G ) ( F `  y
) ) )
6968eleq1d 2686 . . . . . . . . . . . 12  |-  ( ( F `  x )  =  if ( y  =  x ,  ( F `  x ) ,  .0.  )  -> 
( ( ( F `
 x ) (
-g `  G )
( F `  y
) )  e.  ( (mrCls `  (SubGrp `  G
) ) `  U. ( S " ( I 
\  { x }
) ) )  <->  ( if ( y  =  x ,  ( F `  x ) ,  .0.  ) ( -g `  G
) ( F `  y ) )  e.  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " (
I  \  { x } ) ) ) ) )
70 oveq1 6657 . . . . . . . . . . . . 13  |-  (  .0.  =  if ( y  =  x ,  ( F `  x ) ,  .0.  )  -> 
(  .0.  ( -g `  G ) ( F `
 y ) )  =  ( if ( y  =  x ,  ( F `  x
) ,  .0.  )
( -g `  G ) ( F `  y
) ) )
7170eleq1d 2686 . . . . . . . . . . . 12  |-  (  .0.  =  if ( y  =  x ,  ( F `  x ) ,  .0.  )  -> 
( (  .0.  ( -g `  G ) ( F `  y ) )  e.  ( (mrCls `  (SubGrp `  G )
) `  U. ( S
" ( I  \  { x } ) ) )  <->  ( if ( y  =  x ,  ( F `  x ) ,  .0.  ) ( -g `  G
) ( F `  y ) )  e.  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " (
I  \  { x } ) ) ) ) )
72 simpr 477 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  /\  y  e.  I )  /\  y  =  x )  ->  y  =  x )
7372fveq2d 6195 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  /\  y  e.  I )  /\  y  =  x )  ->  ( F `  y )  =  ( F `  x ) )
7473oveq2d 6666 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  /\  y  e.  I )  /\  y  =  x )  ->  (
( F `  x
) ( -g `  G
) ( F `  y ) )  =  ( ( F `  x ) ( -g `  G ) ( F `
 x ) ) )
755, 11, 19grpsubid 17499 . . . . . . . . . . . . . . . 16  |-  ( ( G  e.  Grp  /\  ( F `  x )  e.  ( Base `  G
) )  ->  (
( F `  x
) ( -g `  G
) ( F `  x ) )  =  .0.  )
7639, 40, 75syl2anc 693 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  (
( F `  x
) ( -g `  G
) ( F `  x ) )  =  .0.  )
7711subg0cl 17602 . . . . . . . . . . . . . . . 16  |-  ( ( (mrCls `  (SubGrp `  G
) ) `  U. ( S " ( I 
\  { x }
) ) )  e.  (SubGrp `  G )  ->  .0.  e.  ( (mrCls `  (SubGrp `  G )
) `  U. ( S
" ( I  \  { x } ) ) ) )
7865, 77syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  .0.  e.  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " (
I  \  { x } ) ) ) )
7976, 78eqeltrd 2701 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  (
( F `  x
) ( -g `  G
) ( F `  x ) )  e.  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " (
I  \  { x } ) ) ) )
8079ad2antrr 762 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  /\  y  e.  I )  /\  y  =  x )  ->  (
( F `  x
) ( -g `  G
) ( F `  x ) )  e.  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " (
I  \  { x } ) ) ) )
8174, 80eqeltrd 2701 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  /\  y  e.  I )  /\  y  =  x )  ->  (
( F `  x
) ( -g `  G
) ( F `  y ) )  e.  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " (
I  \  { x } ) ) ) )
8265ad2antrr 762 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  /\  y  e.  I )  /\  -.  y  =  x )  ->  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " (
I  \  { x } ) ) )  e.  (SubGrp `  G
) )
8382, 77syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  /\  y  e.  I )  /\  -.  y  =  x )  ->  .0.  e.  ( (mrCls `  (SubGrp `  G )
) `  U. ( S
" ( I  \  { x } ) ) ) )
8451, 63, 62mrcssidd 16285 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  U. ( S " ( I  \  { x } ) )  C_  ( (mrCls `  (SubGrp `  G )
) `  U. ( S
" ( I  \  { x } ) ) ) )
8584ad2antrr 762 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  /\  y  e.  I )  /\  -.  y  =  x )  ->  U. ( S "
( I  \  {
x } ) ) 
C_  ( (mrCls `  (SubGrp `  G ) ) `
 U. ( S
" ( I  \  { x } ) ) ) )
861, 12, 13, 18dprdfcl 18412 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  /\  y  e.  I )  ->  ( F `  y )  e.  ( S `  y
) )
8786adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  /\  y  e.  I )  /\  -.  y  =  x )  ->  ( F `  y
)  e.  ( S `
 y ) )
88 ffn 6045 . . . . . . . . . . . . . . . . . 18  |-  ( S : I --> (SubGrp `  G )  ->  S  Fn  I )
8954, 88syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  S  Fn  I )
9089ad2antrr 762 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  /\  y  e.  I )  /\  -.  y  =  x )  ->  S  Fn  I )
91 difssd 3738 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  /\  y  e.  I )  /\  -.  y  =  x )  ->  ( I  \  {
x } )  C_  I )
92 df-ne 2795 . . . . . . . . . . . . . . . . . 18  |-  ( y  =/=  x  <->  -.  y  =  x )
93 eldifsn 4317 . . . . . . . . . . . . . . . . . . 19  |-  ( y  e.  ( I  \  { x } )  <-> 
( y  e.  I  /\  y  =/=  x
) )
9493biimpri 218 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  e.  I  /\  y  =/=  x )  -> 
y  e.  ( I 
\  { x }
) )
9592, 94sylan2br 493 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  I  /\  -.  y  =  x
)  ->  y  e.  ( I  \  { x } ) )
9695adantll 750 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  /\  y  e.  I )  /\  -.  y  =  x )  ->  y  e.  ( I 
\  { x }
) )
97 fnfvima 6496 . . . . . . . . . . . . . . . 16  |-  ( ( S  Fn  I  /\  ( I  \  { x } )  C_  I  /\  y  e.  (
I  \  { x } ) )  -> 
( S `  y
)  e.  ( S
" ( I  \  { x } ) ) )
9890, 91, 96, 97syl3anc 1326 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  /\  y  e.  I )  /\  -.  y  =  x )  ->  ( S `  y
)  e.  ( S
" ( I  \  { x } ) ) )
99 elunii 4441 . . . . . . . . . . . . . . 15  |-  ( ( ( F `  y
)  e.  ( S `
 y )  /\  ( S `  y )  e.  ( S "
( I  \  {
x } ) ) )  ->  ( F `  y )  e.  U. ( S " ( I 
\  { x }
) ) )
10087, 98, 99syl2anc 693 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  /\  y  e.  I )  /\  -.  y  =  x )  ->  ( F `  y
)  e.  U. ( S " ( I  \  { x } ) ) )
10185, 100sseldd 3604 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  /\  y  e.  I )  /\  -.  y  =  x )  ->  ( F `  y
)  e.  ( (mrCls `  (SubGrp `  G )
) `  U. ( S
" ( I  \  { x } ) ) ) )
10219subgsubcl 17605 . . . . . . . . . . . . 13  |-  ( ( ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " (
I  \  { x } ) ) )  e.  (SubGrp `  G
)  /\  .0.  e.  ( (mrCls `  (SubGrp `  G
) ) `  U. ( S " ( I 
\  { x }
) ) )  /\  ( F `  y )  e.  ( (mrCls `  (SubGrp `  G ) ) `
 U. ( S
" ( I  \  { x } ) ) ) )  -> 
(  .0.  ( -g `  G ) ( F `
 y ) )  e.  ( (mrCls `  (SubGrp `  G ) ) `
 U. ( S
" ( I  \  { x } ) ) ) )
10382, 83, 101, 102syl3anc 1326 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  /\  y  e.  I )  /\  -.  y  =  x )  ->  (  .0.  ( -g `  G ) ( F `
 y ) )  e.  ( (mrCls `  (SubGrp `  G ) ) `
 U. ( S
" ( I  \  { x } ) ) ) )
10469, 71, 81, 103ifbothda 4123 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  /\  y  e.  I )  ->  ( if ( y  =  x ,  ( F `  x ) ,  .0.  ) ( -g `  G
) ( F `  y ) )  e.  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " (
I  \  { x } ) ) ) )
105 eqid 2622 . . . . . . . . . . 11  |-  ( y  e.  I  |->  ( if ( y  =  x ,  ( F `  x ) ,  .0.  ) ( -g `  G
) ( F `  y ) ) )  =  ( y  e.  I  |->  ( if ( y  =  x ,  ( F `  x
) ,  .0.  )
( -g `  G ) ( F `  y
) ) )
106104, 105fmptd 6385 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  (
y  e.  I  |->  ( if ( y  =  x ,  ( F `
 x ) ,  .0.  ) ( -g `  G ) ( F `
 y ) ) ) : I --> ( (mrCls `  (SubGrp `  G )
) `  U. ( S
" ( I  \  { x } ) ) ) )
10720simpld 475 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  (
( y  e.  I  |->  if ( y  =  x ,  ( F `
 x ) ,  .0.  ) )  oF ( -g `  G
) F )  e.  W )
10833, 107eqeltrrd 2702 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  (
y  e.  I  |->  ( if ( y  =  x ,  ( F `
 x ) ,  .0.  ) ( -g `  G ) ( F `
 y ) ) )  e.  W )
1091, 12, 13, 108, 45dprdfcntz 18414 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  ran  ( y  e.  I  |->  ( if ( y  =  x ,  ( F `  x ) ,  .0.  ) (
-g `  G )
( F `  y
) ) )  C_  ( (Cntz `  G ) `  ran  ( y  e.  I  |->  ( if ( y  =  x ,  ( F `  x
) ,  .0.  )
( -g `  G ) ( F `  y
) ) ) ) )
1101, 12, 13, 108dprdffsupp 18413 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  (
y  e.  I  |->  ( if ( y  =  x ,  ( F `
 x ) ,  .0.  ) ( -g `  G ) ( F `
 y ) ) ) finSupp  .0.  )
11111, 45, 48, 23, 67, 106, 109, 110gsumzsubmcl 18318 . . . . . . . . 9  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  ( G  gsumg  ( y  e.  I  |->  ( if ( y  =  x ,  ( F `  x ) ,  .0.  ) (
-g `  G )
( F `  y
) ) ) )  e.  ( (mrCls `  (SubGrp `  G ) ) `
 U. ( S
" ( I  \  { x } ) ) ) )
11244, 111eqeltrrd 2702 . . . . . . . 8  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  ( F `  x )  e.  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " (
I  \  { x } ) ) ) )
11310, 112elind 3798 . . . . . . 7  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  ( F `  x )  e.  ( ( S `  x )  i^i  (
(mrCls `  (SubGrp `  G
) ) `  U. ( S " ( I 
\  { x }
) ) ) ) )
11412, 13, 14, 11, 63dprddisj 18408 . . . . . . 7  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  (
( S `  x
)  i^i  ( (mrCls `  (SubGrp `  G )
) `  U. ( S
" ( I  \  { x } ) ) ) )  =  {  .0.  } )
115113, 114eleqtrd 2703 . . . . . 6  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  ( F `  x )  e.  {  .0.  } )
116 elsni 4194 . . . . . 6  |-  ( ( F `  x )  e.  {  .0.  }  ->  ( F `  x
)  =  .0.  )
117115, 116syl 17 . . . . 5  |-  ( ( ( ph  /\  ( G  gsumg  F )  =  .0.  )  /\  x  e.  I )  ->  ( F `  x )  =  .0.  )
118117mpteq2dva 4744 . . . 4  |-  ( (
ph  /\  ( G  gsumg  F )  =  .0.  )  ->  ( x  e.  I  |->  ( F `  x
) )  =  ( x  e.  I  |->  .0.  ) )
1198, 118eqtrd 2656 . . 3  |-  ( (
ph  /\  ( G  gsumg  F )  =  .0.  )  ->  F  =  ( x  e.  I  |->  .0.  )
)
120119ex 450 . 2  |-  ( ph  ->  ( ( G  gsumg  F )  =  .0.  ->  F  =  ( x  e.  I  |->  .0.  ) )
)
12111gsumz 17374 . . . 4  |-  ( ( G  e.  Mnd  /\  I  e.  _V )  ->  ( G  gsumg  ( x  e.  I  |->  .0.  ) )  =  .0.  )
12247, 22, 121syl2anc 693 . . 3  |-  ( ph  ->  ( G  gsumg  ( x  e.  I  |->  .0.  ) )  =  .0.  )
123 oveq2 6658 . . . 4  |-  ( F  =  ( x  e.  I  |->  .0.  )  ->  ( G  gsumg  F )  =  ( G  gsumg  ( x  e.  I  |->  .0.  ) ) )
124123eqeq1d 2624 . . 3  |-  ( F  =  ( x  e.  I  |->  .0.  )  ->  ( ( G  gsumg  F )  =  .0.  <->  ( G  gsumg  ( x  e.  I  |->  .0.  ) )  =  .0.  ) )
125122, 124syl5ibrcom 237 . 2  |-  ( ph  ->  ( F  =  ( x  e.  I  |->  .0.  )  ->  ( G  gsumg  F )  =  .0.  )
)
126120, 125impbid 202 1  |-  ( ph  ->  ( ( G  gsumg  F )  =  .0.  <->  F  =  ( x  e.  I  |->  .0.  ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   {crab 2916   _Vcvv 3200    \ cdif 3571    i^i cin 3573    C_ wss 3574   ifcif 4086   ~Pcpw 4158   {csn 4177   U.cuni 4436   class class class wbr 4653    |-> cmpt 4729   dom cdm 5114   ran crn 5115   "cima 5117    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650    oFcof 6895   X_cixp 7908   finSupp cfsupp 8275   Basecbs 15857   0gc0g 16100    gsumg cgsu 16101  Moorecmre 16242  mrClscmrc 16243  ACScacs 16245   Mndcmnd 17294  SubMndcsubmnd 17334   Grpcgrp 17422   -gcsg 17424  SubGrpcsubg 17588  Cntzccntz 17748   DProd cdprd 18392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-gsum 16103  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-ghm 17658  df-gim 17701  df-cntz 17750  df-oppg 17776  df-cmn 18195  df-dprd 18394
This theorem is referenced by:  dprdf11  18422
  Copyright terms: Public domain W3C validator