MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmdprdsplit2lem Structured version   Visualization version   Unicode version

Theorem dmdprdsplit2lem 18444
Description: Lemma for dmdprdsplit 18446. (Contributed by Mario Carneiro, 26-Apr-2016.)
Hypotheses
Ref Expression
dprdsplit.2  |-  ( ph  ->  S : I --> (SubGrp `  G ) )
dprdsplit.i  |-  ( ph  ->  ( C  i^i  D
)  =  (/) )
dprdsplit.u  |-  ( ph  ->  I  =  ( C  u.  D ) )
dmdprdsplit.z  |-  Z  =  (Cntz `  G )
dmdprdsplit.0  |-  .0.  =  ( 0g `  G )
dmdprdsplit2.1  |-  ( ph  ->  G dom DProd  ( S  |`  C ) )
dmdprdsplit2.2  |-  ( ph  ->  G dom DProd  ( S  |`  D ) )
dmdprdsplit2.3  |-  ( ph  ->  ( G DProd  ( S  |`  C ) )  C_  ( Z `  ( G DProd 
( S  |`  D ) ) ) )
dmdprdsplit2.4  |-  ( ph  ->  ( ( G DProd  ( S  |`  C ) )  i^i  ( G DProd  ( S  |`  D ) ) )  =  {  .0.  } )
dmdprdsplit2lem.k  |-  K  =  (mrCls `  (SubGrp `  G
) )
Assertion
Ref Expression
dmdprdsplit2lem  |-  ( (
ph  /\  X  e.  C )  ->  (
( Y  e.  I  ->  ( X  =/=  Y  ->  ( S `  X
)  C_  ( Z `  ( S `  Y
) ) ) )  /\  ( ( S `
 X )  i^i  ( K `  U. ( S " ( I 
\  { X }
) ) ) ) 
C_  {  .0.  } ) )

Proof of Theorem dmdprdsplit2lem
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dprdsplit.u . . . . . 6  |-  ( ph  ->  I  =  ( C  u.  D ) )
21adantr 481 . . . . 5  |-  ( (
ph  /\  X  e.  C )  ->  I  =  ( C  u.  D ) )
32eleq2d 2687 . . . 4  |-  ( (
ph  /\  X  e.  C )  ->  ( Y  e.  I  <->  Y  e.  ( C  u.  D
) ) )
4 elun 3753 . . . 4  |-  ( Y  e.  ( C  u.  D )  <->  ( Y  e.  C  \/  Y  e.  D ) )
53, 4syl6bb 276 . . 3  |-  ( (
ph  /\  X  e.  C )  ->  ( Y  e.  I  <->  ( Y  e.  C  \/  Y  e.  D ) ) )
6 dmdprdsplit2.1 . . . . . . . 8  |-  ( ph  ->  G dom DProd  ( S  |`  C ) )
76ad2antrr 762 . . . . . . 7  |-  ( ( ( ph  /\  X  e.  C )  /\  ( Y  e.  C  /\  X  =/=  Y ) )  ->  G dom DProd  ( S  |`  C ) )
8 dprdsplit.2 . . . . . . . . . 10  |-  ( ph  ->  S : I --> (SubGrp `  G ) )
9 ssun1 3776 . . . . . . . . . . 11  |-  C  C_  ( C  u.  D
)
109, 1syl5sseqr 3654 . . . . . . . . . 10  |-  ( ph  ->  C  C_  I )
118, 10fssresd 6071 . . . . . . . . 9  |-  ( ph  ->  ( S  |`  C ) : C --> (SubGrp `  G ) )
12 fdm 6051 . . . . . . . . 9  |-  ( ( S  |`  C ) : C --> (SubGrp `  G )  ->  dom  ( S  |`  C )  =  C )
1311, 12syl 17 . . . . . . . 8  |-  ( ph  ->  dom  ( S  |`  C )  =  C )
1413ad2antrr 762 . . . . . . 7  |-  ( ( ( ph  /\  X  e.  C )  /\  ( Y  e.  C  /\  X  =/=  Y ) )  ->  dom  ( S  |`  C )  =  C )
15 simplr 792 . . . . . . 7  |-  ( ( ( ph  /\  X  e.  C )  /\  ( Y  e.  C  /\  X  =/=  Y ) )  ->  X  e.  C
)
16 simprl 794 . . . . . . 7  |-  ( ( ( ph  /\  X  e.  C )  /\  ( Y  e.  C  /\  X  =/=  Y ) )  ->  Y  e.  C
)
17 simprr 796 . . . . . . 7  |-  ( ( ( ph  /\  X  e.  C )  /\  ( Y  e.  C  /\  X  =/=  Y ) )  ->  X  =/=  Y
)
18 dmdprdsplit.z . . . . . . 7  |-  Z  =  (Cntz `  G )
197, 14, 15, 16, 17, 18dprdcntz 18407 . . . . . 6  |-  ( ( ( ph  /\  X  e.  C )  /\  ( Y  e.  C  /\  X  =/=  Y ) )  ->  ( ( S  |`  C ) `  X
)  C_  ( Z `  ( ( S  |`  C ) `  Y
) ) )
20 fvres 6207 . . . . . . 7  |-  ( X  e.  C  ->  (
( S  |`  C ) `
 X )  =  ( S `  X
) )
2120ad2antlr 763 . . . . . 6  |-  ( ( ( ph  /\  X  e.  C )  /\  ( Y  e.  C  /\  X  =/=  Y ) )  ->  ( ( S  |`  C ) `  X
)  =  ( S `
 X ) )
22 fvres 6207 . . . . . . . 8  |-  ( Y  e.  C  ->  (
( S  |`  C ) `
 Y )  =  ( S `  Y
) )
2322ad2antrl 764 . . . . . . 7  |-  ( ( ( ph  /\  X  e.  C )  /\  ( Y  e.  C  /\  X  =/=  Y ) )  ->  ( ( S  |`  C ) `  Y
)  =  ( S `
 Y ) )
2423fveq2d 6195 . . . . . 6  |-  ( ( ( ph  /\  X  e.  C )  /\  ( Y  e.  C  /\  X  =/=  Y ) )  ->  ( Z `  ( ( S  |`  C ) `  Y
) )  =  ( Z `  ( S `
 Y ) ) )
2519, 21, 243sstr3d 3647 . . . . 5  |-  ( ( ( ph  /\  X  e.  C )  /\  ( Y  e.  C  /\  X  =/=  Y ) )  ->  ( S `  X )  C_  ( Z `  ( S `  Y ) ) )
2625exp32 631 . . . 4  |-  ( (
ph  /\  X  e.  C )  ->  ( Y  e.  C  ->  ( X  =/=  Y  -> 
( S `  X
)  C_  ( Z `  ( S `  Y
) ) ) ) )
2720ad2antlr 763 . . . . . . 7  |-  ( ( ( ph  /\  X  e.  C )  /\  ( Y  e.  D  /\  X  =/=  Y ) )  ->  ( ( S  |`  C ) `  X
)  =  ( S `
 X ) )
286ad2antrr 762 . . . . . . . 8  |-  ( ( ( ph  /\  X  e.  C )  /\  ( Y  e.  D  /\  X  =/=  Y ) )  ->  G dom DProd  ( S  |`  C ) )
2913ad2antrr 762 . . . . . . . 8  |-  ( ( ( ph  /\  X  e.  C )  /\  ( Y  e.  D  /\  X  =/=  Y ) )  ->  dom  ( S  |`  C )  =  C )
30 simplr 792 . . . . . . . 8  |-  ( ( ( ph  /\  X  e.  C )  /\  ( Y  e.  D  /\  X  =/=  Y ) )  ->  X  e.  C
)
3128, 29, 30dprdub 18424 . . . . . . 7  |-  ( ( ( ph  /\  X  e.  C )  /\  ( Y  e.  D  /\  X  =/=  Y ) )  ->  ( ( S  |`  C ) `  X
)  C_  ( G DProd  ( S  |`  C )
) )
3227, 31eqsstr3d 3640 . . . . . 6  |-  ( ( ( ph  /\  X  e.  C )  /\  ( Y  e.  D  /\  X  =/=  Y ) )  ->  ( S `  X )  C_  ( G DProd  ( S  |`  C ) ) )
33 dmdprdsplit2.3 . . . . . . . 8  |-  ( ph  ->  ( G DProd  ( S  |`  C ) )  C_  ( Z `  ( G DProd 
( S  |`  D ) ) ) )
3433ad2antrr 762 . . . . . . 7  |-  ( ( ( ph  /\  X  e.  C )  /\  ( Y  e.  D  /\  X  =/=  Y ) )  ->  ( G DProd  ( S  |`  C ) ) 
C_  ( Z `  ( G DProd  ( S  |`  D ) ) ) )
35 eqid 2622 . . . . . . . . 9  |-  ( Base `  G )  =  (
Base `  G )
3635dprdssv 18415 . . . . . . . 8  |-  ( G DProd 
( S  |`  D ) )  C_  ( Base `  G )
37 fvres 6207 . . . . . . . . . 10  |-  ( Y  e.  D  ->  (
( S  |`  D ) `
 Y )  =  ( S `  Y
) )
3837ad2antrl 764 . . . . . . . . 9  |-  ( ( ( ph  /\  X  e.  C )  /\  ( Y  e.  D  /\  X  =/=  Y ) )  ->  ( ( S  |`  D ) `  Y
)  =  ( S `
 Y ) )
39 dmdprdsplit2.2 . . . . . . . . . . 11  |-  ( ph  ->  G dom DProd  ( S  |`  D ) )
4039ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( ph  /\  X  e.  C )  /\  ( Y  e.  D  /\  X  =/=  Y ) )  ->  G dom DProd  ( S  |`  D ) )
41 ssun2 3777 . . . . . . . . . . . . . 14  |-  D  C_  ( C  u.  D
)
4241, 1syl5sseqr 3654 . . . . . . . . . . . . 13  |-  ( ph  ->  D  C_  I )
438, 42fssresd 6071 . . . . . . . . . . . 12  |-  ( ph  ->  ( S  |`  D ) : D --> (SubGrp `  G ) )
44 fdm 6051 . . . . . . . . . . . 12  |-  ( ( S  |`  D ) : D --> (SubGrp `  G )  ->  dom  ( S  |`  D )  =  D )
4543, 44syl 17 . . . . . . . . . . 11  |-  ( ph  ->  dom  ( S  |`  D )  =  D )
4645ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( ph  /\  X  e.  C )  /\  ( Y  e.  D  /\  X  =/=  Y ) )  ->  dom  ( S  |`  D )  =  D )
47 simprl 794 . . . . . . . . . 10  |-  ( ( ( ph  /\  X  e.  C )  /\  ( Y  e.  D  /\  X  =/=  Y ) )  ->  Y  e.  D
)
4840, 46, 47dprdub 18424 . . . . . . . . 9  |-  ( ( ( ph  /\  X  e.  C )  /\  ( Y  e.  D  /\  X  =/=  Y ) )  ->  ( ( S  |`  D ) `  Y
)  C_  ( G DProd  ( S  |`  D )
) )
4938, 48eqsstr3d 3640 . . . . . . . 8  |-  ( ( ( ph  /\  X  e.  C )  /\  ( Y  e.  D  /\  X  =/=  Y ) )  ->  ( S `  Y )  C_  ( G DProd  ( S  |`  D ) ) )
5035, 18cntz2ss 17765 . . . . . . . 8  |-  ( ( ( G DProd  ( S  |`  D ) )  C_  ( Base `  G )  /\  ( S `  Y
)  C_  ( G DProd  ( S  |`  D )
) )  ->  ( Z `  ( G DProd  ( S  |`  D )
) )  C_  ( Z `  ( S `  Y ) ) )
5136, 49, 50sylancr 695 . . . . . . 7  |-  ( ( ( ph  /\  X  e.  C )  /\  ( Y  e.  D  /\  X  =/=  Y ) )  ->  ( Z `  ( G DProd  ( S  |`  D ) ) ) 
C_  ( Z `  ( S `  Y ) ) )
5234, 51sstrd 3613 . . . . . 6  |-  ( ( ( ph  /\  X  e.  C )  /\  ( Y  e.  D  /\  X  =/=  Y ) )  ->  ( G DProd  ( S  |`  C ) ) 
C_  ( Z `  ( S `  Y ) ) )
5332, 52sstrd 3613 . . . . 5  |-  ( ( ( ph  /\  X  e.  C )  /\  ( Y  e.  D  /\  X  =/=  Y ) )  ->  ( S `  X )  C_  ( Z `  ( S `  Y ) ) )
5453exp32 631 . . . 4  |-  ( (
ph  /\  X  e.  C )  ->  ( Y  e.  D  ->  ( X  =/=  Y  -> 
( S `  X
)  C_  ( Z `  ( S `  Y
) ) ) ) )
5526, 54jaod 395 . . 3  |-  ( (
ph  /\  X  e.  C )  ->  (
( Y  e.  C  \/  Y  e.  D
)  ->  ( X  =/=  Y  ->  ( S `  X )  C_  ( Z `  ( S `  Y ) ) ) ) )
565, 55sylbid 230 . 2  |-  ( (
ph  /\  X  e.  C )  ->  ( Y  e.  I  ->  ( X  =/=  Y  -> 
( S `  X
)  C_  ( Z `  ( S `  Y
) ) ) ) )
57 dprdgrp 18404 . . . . . . . 8  |-  ( G dom DProd  ( S  |`  C )  ->  G  e.  Grp )
586, 57syl 17 . . . . . . 7  |-  ( ph  ->  G  e.  Grp )
5958adantr 481 . . . . . 6  |-  ( (
ph  /\  X  e.  C )  ->  G  e.  Grp )
6035subgacs 17629 . . . . . 6  |-  ( G  e.  Grp  ->  (SubGrp `  G )  e.  (ACS
`  ( Base `  G
) ) )
61 acsmre 16313 . . . . . 6  |-  ( (SubGrp `  G )  e.  (ACS
`  ( Base `  G
) )  ->  (SubGrp `  G )  e.  (Moore `  ( Base `  G
) ) )
6259, 60, 613syl 18 . . . . 5  |-  ( (
ph  /\  X  e.  C )  ->  (SubGrp `  G )  e.  (Moore `  ( Base `  G
) ) )
63 difundir 3880 . . . . . . . . . . 11  |-  ( ( C  u.  D ) 
\  { X }
)  =  ( ( C  \  { X } )  u.  ( D  \  { X }
) )
642difeq1d 3727 . . . . . . . . . . 11  |-  ( (
ph  /\  X  e.  C )  ->  (
I  \  { X } )  =  ( ( C  u.  D
)  \  { X } ) )
65 simpr 477 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  X  e.  C )  ->  X  e.  C )
6665snssd 4340 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  X  e.  C )  ->  { X }  C_  C )
67 sslin 3839 . . . . . . . . . . . . . . 15  |-  ( { X }  C_  C  ->  ( D  i^i  { X } )  C_  ( D  i^i  C ) )
6866, 67syl 17 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  X  e.  C )  ->  ( D  i^i  { X }
)  C_  ( D  i^i  C ) )
69 incom 3805 . . . . . . . . . . . . . . 15  |-  ( C  i^i  D )  =  ( D  i^i  C
)
70 dprdsplit.i . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( C  i^i  D
)  =  (/) )
7170adantr 481 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  X  e.  C )  ->  ( C  i^i  D )  =  (/) )
7269, 71syl5eqr 2670 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  X  e.  C )  ->  ( D  i^i  C )  =  (/) )
73 sseq0 3975 . . . . . . . . . . . . . 14  |-  ( ( ( D  i^i  { X } )  C_  ( D  i^i  C )  /\  ( D  i^i  C )  =  (/) )  ->  ( D  i^i  { X }
)  =  (/) )
7468, 72, 73syl2anc 693 . . . . . . . . . . . . 13  |-  ( (
ph  /\  X  e.  C )  ->  ( D  i^i  { X }
)  =  (/) )
75 disj3 4021 . . . . . . . . . . . . 13  |-  ( ( D  i^i  { X } )  =  (/)  <->  D  =  ( D  \  { X } ) )
7674, 75sylib 208 . . . . . . . . . . . 12  |-  ( (
ph  /\  X  e.  C )  ->  D  =  ( D  \  { X } ) )
7776uneq2d 3767 . . . . . . . . . . 11  |-  ( (
ph  /\  X  e.  C )  ->  (
( C  \  { X } )  u.  D
)  =  ( ( C  \  { X } )  u.  ( D  \  { X }
) ) )
7863, 64, 773eqtr4a 2682 . . . . . . . . . 10  |-  ( (
ph  /\  X  e.  C )  ->  (
I  \  { X } )  =  ( ( C  \  { X } )  u.  D
) )
7978imaeq2d 5466 . . . . . . . . 9  |-  ( (
ph  /\  X  e.  C )  ->  ( S " ( I  \  { X } ) )  =  ( S "
( ( C  \  { X } )  u.  D ) ) )
80 imaundi 5545 . . . . . . . . 9  |-  ( S
" ( ( C 
\  { X }
)  u.  D ) )  =  ( ( S " ( C 
\  { X }
) )  u.  ( S " D ) )
8179, 80syl6eq 2672 . . . . . . . 8  |-  ( (
ph  /\  X  e.  C )  ->  ( S " ( I  \  { X } ) )  =  ( ( S
" ( C  \  { X } ) )  u.  ( S " D ) ) )
8281unieqd 4446 . . . . . . 7  |-  ( (
ph  /\  X  e.  C )  ->  U. ( S " ( I  \  { X } ) )  =  U. ( ( S " ( C 
\  { X }
) )  u.  ( S " D ) ) )
83 uniun 4456 . . . . . . 7  |-  U. (
( S " ( C  \  { X }
) )  u.  ( S " D ) )  =  ( U. ( S " ( C  \  { X } ) )  u.  U. ( S
" D ) )
8482, 83syl6eq 2672 . . . . . 6  |-  ( (
ph  /\  X  e.  C )  ->  U. ( S " ( I  \  { X } ) )  =  ( U. ( S " ( C  \  { X } ) )  u.  U. ( S
" D ) ) )
85 dmdprdsplit2lem.k . . . . . . . . 9  |-  K  =  (mrCls `  (SubGrp `  G
) )
86 difss 3737 . . . . . . . . . . 11  |-  ( C 
\  { X }
)  C_  C
87 imass2 5501 . . . . . . . . . . 11  |-  ( ( C  \  { X } )  C_  C  ->  ( S " ( C  \  { X }
) )  C_  ( S " C ) )
88 uniss 4458 . . . . . . . . . . 11  |-  ( ( S " ( C 
\  { X }
) )  C_  ( S " C )  ->  U. ( S " ( C  \  { X }
) )  C_  U. ( S " C ) )
8986, 87, 88mp2b 10 . . . . . . . . . 10  |-  U. ( S " ( C  \  { X } ) ) 
C_  U. ( S " C )
90 imassrn 5477 . . . . . . . . . . . 12  |-  ( S
" C )  C_  ran  S
91 frn 6053 . . . . . . . . . . . . . . 15  |-  ( S : I --> (SubGrp `  G )  ->  ran  S 
C_  (SubGrp `  G )
)
928, 91syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  ran  S  C_  (SubGrp `  G ) )
9392adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\  X  e.  C )  ->  ran  S 
C_  (SubGrp `  G )
)
94 mresspw 16252 . . . . . . . . . . . . . 14  |-  ( (SubGrp `  G )  e.  (Moore `  ( Base `  G
) )  ->  (SubGrp `  G )  C_  ~P ( Base `  G )
)
9562, 94syl 17 . . . . . . . . . . . . 13  |-  ( (
ph  /\  X  e.  C )  ->  (SubGrp `  G )  C_  ~P ( Base `  G )
)
9693, 95sstrd 3613 . . . . . . . . . . . 12  |-  ( (
ph  /\  X  e.  C )  ->  ran  S 
C_  ~P ( Base `  G
) )
9790, 96syl5ss 3614 . . . . . . . . . . 11  |-  ( (
ph  /\  X  e.  C )  ->  ( S " C )  C_  ~P ( Base `  G
) )
98 sspwuni 4611 . . . . . . . . . . 11  |-  ( ( S " C ) 
C_  ~P ( Base `  G
)  <->  U. ( S " C )  C_  ( Base `  G ) )
9997, 98sylib 208 . . . . . . . . . 10  |-  ( (
ph  /\  X  e.  C )  ->  U. ( S " C )  C_  ( Base `  G )
)
10089, 99syl5ss 3614 . . . . . . . . 9  |-  ( (
ph  /\  X  e.  C )  ->  U. ( S " ( C  \  { X } ) ) 
C_  ( Base `  G
) )
10162, 85, 100mrcssidd 16285 . . . . . . . 8  |-  ( (
ph  /\  X  e.  C )  ->  U. ( S " ( C  \  { X } ) ) 
C_  ( K `  U. ( S " ( C  \  { X }
) ) ) )
102 imassrn 5477 . . . . . . . . . . . 12  |-  ( S
" D )  C_  ran  S
103102, 96syl5ss 3614 . . . . . . . . . . 11  |-  ( (
ph  /\  X  e.  C )  ->  ( S " D )  C_  ~P ( Base `  G
) )
104 sspwuni 4611 . . . . . . . . . . 11  |-  ( ( S " D ) 
C_  ~P ( Base `  G
)  <->  U. ( S " D )  C_  ( Base `  G ) )
105103, 104sylib 208 . . . . . . . . . 10  |-  ( (
ph  /\  X  e.  C )  ->  U. ( S " D )  C_  ( Base `  G )
)
10662, 85, 105mrcssidd 16285 . . . . . . . . 9  |-  ( (
ph  /\  X  e.  C )  ->  U. ( S " D )  C_  ( K `  U. ( S " D ) ) )
10785dprdspan 18426 . . . . . . . . . . . 12  |-  ( G dom DProd  ( S  |`  D )  ->  ( G DProd  ( S  |`  D ) )  =  ( K `
 U. ran  ( S  |`  D ) ) )
10839, 107syl 17 . . . . . . . . . . 11  |-  ( ph  ->  ( G DProd  ( S  |`  D ) )  =  ( K `  U. ran  ( S  |`  D ) ) )
109 df-ima 5127 . . . . . . . . . . . . 13  |-  ( S
" D )  =  ran  ( S  |`  D )
110109unieqi 4445 . . . . . . . . . . . 12  |-  U. ( S " D )  = 
U. ran  ( S  |`  D )
111110fveq2i 6194 . . . . . . . . . . 11  |-  ( K `
 U. ( S
" D ) )  =  ( K `  U. ran  ( S  |`  D ) )
112108, 111syl6eqr 2674 . . . . . . . . . 10  |-  ( ph  ->  ( G DProd  ( S  |`  D ) )  =  ( K `  U. ( S " D ) ) )
113112adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  X  e.  C )  ->  ( G DProd  ( S  |`  D ) )  =  ( K `
 U. ( S
" D ) ) )
114106, 113sseqtr4d 3642 . . . . . . . 8  |-  ( (
ph  /\  X  e.  C )  ->  U. ( S " D )  C_  ( G DProd  ( S  |`  D ) ) )
115 unss12 3785 . . . . . . . 8  |-  ( ( U. ( S "
( C  \  { X } ) )  C_  ( K `  U. ( S " ( C  \  { X } ) ) )  /\  U. ( S " D )  C_  ( G DProd  ( S  |`  D ) ) )  ->  ( U. ( S " ( C  \  { X } ) )  u.  U. ( S
" D ) ) 
C_  ( ( K `
 U. ( S
" ( C  \  { X } ) ) )  u.  ( G DProd 
( S  |`  D ) ) ) )
116101, 114, 115syl2anc 693 . . . . . . 7  |-  ( (
ph  /\  X  e.  C )  ->  ( U. ( S " ( C  \  { X }
) )  u.  U. ( S " D ) )  C_  ( ( K `  U. ( S
" ( C  \  { X } ) ) )  u.  ( G DProd 
( S  |`  D ) ) ) )
11785mrccl 16271 . . . . . . . . 9  |-  ( ( (SubGrp `  G )  e.  (Moore `  ( Base `  G ) )  /\  U. ( S " ( C  \  { X }
) )  C_  ( Base `  G ) )  ->  ( K `  U. ( S " ( C  \  { X }
) ) )  e.  (SubGrp `  G )
)
11862, 100, 117syl2anc 693 . . . . . . . 8  |-  ( (
ph  /\  X  e.  C )  ->  ( K `  U. ( S
" ( C  \  { X } ) ) )  e.  (SubGrp `  G ) )
119 dprdsubg 18423 . . . . . . . . . 10  |-  ( G dom DProd  ( S  |`  D )  ->  ( G DProd  ( S  |`  D ) )  e.  (SubGrp `  G ) )
12039, 119syl 17 . . . . . . . . 9  |-  ( ph  ->  ( G DProd  ( S  |`  D ) )  e.  (SubGrp `  G )
)
121120adantr 481 . . . . . . . 8  |-  ( (
ph  /\  X  e.  C )  ->  ( G DProd  ( S  |`  D ) )  e.  (SubGrp `  G ) )
122 eqid 2622 . . . . . . . . 9  |-  ( LSSum `  G )  =  (
LSSum `  G )
123122lsmunss 18073 . . . . . . . 8  |-  ( ( ( K `  U. ( S " ( C 
\  { X }
) ) )  e.  (SubGrp `  G )  /\  ( G DProd  ( S  |`  D ) )  e.  (SubGrp `  G )
)  ->  ( ( K `  U. ( S
" ( C  \  { X } ) ) )  u.  ( G DProd 
( S  |`  D ) ) )  C_  (
( K `  U. ( S " ( C 
\  { X }
) ) ) (
LSSum `  G ) ( G DProd  ( S  |`  D ) ) ) )
124118, 121, 123syl2anc 693 . . . . . . 7  |-  ( (
ph  /\  X  e.  C )  ->  (
( K `  U. ( S " ( C 
\  { X }
) ) )  u.  ( G DProd  ( S  |`  D ) ) ) 
C_  ( ( K `
 U. ( S
" ( C  \  { X } ) ) ) ( LSSum `  G
) ( G DProd  ( S  |`  D ) ) ) )
125116, 124sstrd 3613 . . . . . 6  |-  ( (
ph  /\  X  e.  C )  ->  ( U. ( S " ( C  \  { X }
) )  u.  U. ( S " D ) )  C_  ( ( K `  U. ( S
" ( C  \  { X } ) ) ) ( LSSum `  G
) ( G DProd  ( S  |`  D ) ) ) )
12684, 125eqsstrd 3639 . . . . 5  |-  ( (
ph  /\  X  e.  C )  ->  U. ( S " ( I  \  { X } ) ) 
C_  ( ( K `
 U. ( S
" ( C  \  { X } ) ) ) ( LSSum `  G
) ( G DProd  ( S  |`  D ) ) ) )
12789a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  X  e.  C )  ->  U. ( S " ( C  \  { X } ) ) 
C_  U. ( S " C ) )
12862, 85, 127, 99mrcssd 16284 . . . . . . . 8  |-  ( (
ph  /\  X  e.  C )  ->  ( K `  U. ( S
" ( C  \  { X } ) ) )  C_  ( K `  U. ( S " C ) ) )
12985dprdspan 18426 . . . . . . . . . . 11  |-  ( G dom DProd  ( S  |`  C )  ->  ( G DProd  ( S  |`  C ) )  =  ( K `
 U. ran  ( S  |`  C ) ) )
1306, 129syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( G DProd  ( S  |`  C ) )  =  ( K `  U. ran  ( S  |`  C ) ) )
131 df-ima 5127 . . . . . . . . . . . 12  |-  ( S
" C )  =  ran  ( S  |`  C )
132131unieqi 4445 . . . . . . . . . . 11  |-  U. ( S " C )  = 
U. ran  ( S  |`  C )
133132fveq2i 6194 . . . . . . . . . 10  |-  ( K `
 U. ( S
" C ) )  =  ( K `  U. ran  ( S  |`  C ) )
134130, 133syl6eqr 2674 . . . . . . . . 9  |-  ( ph  ->  ( G DProd  ( S  |`  C ) )  =  ( K `  U. ( S " C ) ) )
135134adantr 481 . . . . . . . 8  |-  ( (
ph  /\  X  e.  C )  ->  ( G DProd  ( S  |`  C ) )  =  ( K `
 U. ( S
" C ) ) )
136128, 135sseqtr4d 3642 . . . . . . 7  |-  ( (
ph  /\  X  e.  C )  ->  ( K `  U. ( S
" ( C  \  { X } ) ) )  C_  ( G DProd  ( S  |`  C )
) )
13733adantr 481 . . . . . . 7  |-  ( (
ph  /\  X  e.  C )  ->  ( G DProd  ( S  |`  C ) )  C_  ( Z `  ( G DProd  ( S  |`  D ) ) ) )
138136, 137sstrd 3613 . . . . . 6  |-  ( (
ph  /\  X  e.  C )  ->  ( K `  U. ( S
" ( C  \  { X } ) ) )  C_  ( Z `  ( G DProd  ( S  |`  D ) ) ) )
139122, 18lsmsubg 18069 . . . . . 6  |-  ( ( ( K `  U. ( S " ( C 
\  { X }
) ) )  e.  (SubGrp `  G )  /\  ( G DProd  ( S  |`  D ) )  e.  (SubGrp `  G )  /\  ( K `  U. ( S " ( C 
\  { X }
) ) )  C_  ( Z `  ( G DProd 
( S  |`  D ) ) ) )  -> 
( ( K `  U. ( S " ( C  \  { X }
) ) ) (
LSSum `  G ) ( G DProd  ( S  |`  D ) ) )  e.  (SubGrp `  G
) )
140118, 121, 138, 139syl3anc 1326 . . . . 5  |-  ( (
ph  /\  X  e.  C )  ->  (
( K `  U. ( S " ( C 
\  { X }
) ) ) (
LSSum `  G ) ( G DProd  ( S  |`  D ) ) )  e.  (SubGrp `  G
) )
14185mrcsscl 16280 . . . . 5  |-  ( ( (SubGrp `  G )  e.  (Moore `  ( Base `  G ) )  /\  U. ( S " (
I  \  { X } ) )  C_  ( ( K `  U. ( S " ( C  \  { X }
) ) ) (
LSSum `  G ) ( G DProd  ( S  |`  D ) ) )  /\  ( ( K `
 U. ( S
" ( C  \  { X } ) ) ) ( LSSum `  G
) ( G DProd  ( S  |`  D ) ) )  e.  (SubGrp `  G ) )  -> 
( K `  U. ( S " ( I 
\  { X }
) ) )  C_  ( ( K `  U. ( S " ( C  \  { X }
) ) ) (
LSSum `  G ) ( G DProd  ( S  |`  D ) ) ) )
14262, 126, 140, 141syl3anc 1326 . . . 4  |-  ( (
ph  /\  X  e.  C )  ->  ( K `  U. ( S
" ( I  \  { X } ) ) )  C_  ( ( K `  U. ( S
" ( C  \  { X } ) ) ) ( LSSum `  G
) ( G DProd  ( S  |`  D ) ) ) )
143 sslin 3839 . . . 4  |-  ( ( K `  U. ( S " ( I  \  { X } ) ) )  C_  ( ( K `  U. ( S
" ( C  \  { X } ) ) ) ( LSSum `  G
) ( G DProd  ( S  |`  D ) ) )  ->  ( ( S `  X )  i^i  ( K `  U. ( S " ( I 
\  { X }
) ) ) ) 
C_  ( ( S `
 X )  i^i  ( ( K `  U. ( S " ( C  \  { X }
) ) ) (
LSSum `  G ) ( G DProd  ( S  |`  D ) ) ) ) )
144142, 143syl 17 . . 3  |-  ( (
ph  /\  X  e.  C )  ->  (
( S `  X
)  i^i  ( K `  U. ( S "
( I  \  { X } ) ) ) )  C_  ( ( S `  X )  i^i  ( ( K `  U. ( S " ( C  \  { X }
) ) ) (
LSSum `  G ) ( G DProd  ( S  |`  D ) ) ) ) )
14510sselda 3603 . . . . 5  |-  ( (
ph  /\  X  e.  C )  ->  X  e.  I )
1468ffvelrnda 6359 . . . . 5  |-  ( (
ph  /\  X  e.  I )  ->  ( S `  X )  e.  (SubGrp `  G )
)
147145, 146syldan 487 . . . 4  |-  ( (
ph  /\  X  e.  C )  ->  ( S `  X )  e.  (SubGrp `  G )
)
148 dmdprdsplit.0 . . . 4  |-  .0.  =  ( 0g `  G )
14920adantl 482 . . . . . . . . 9  |-  ( (
ph  /\  X  e.  C )  ->  (
( S  |`  C ) `
 X )  =  ( S `  X
) )
1506adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  X  e.  C )  ->  G dom DProd  ( S  |`  C ) )
15113adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  X  e.  C )  ->  dom  ( S  |`  C )  =  C )
152150, 151, 65dprdub 18424 . . . . . . . . 9  |-  ( (
ph  /\  X  e.  C )  ->  (
( S  |`  C ) `
 X )  C_  ( G DProd  ( S  |`  C ) ) )
153149, 152eqsstr3d 3640 . . . . . . . 8  |-  ( (
ph  /\  X  e.  C )  ->  ( S `  X )  C_  ( G DProd  ( S  |`  C ) ) )
154 dprdsubg 18423 . . . . . . . . . . 11  |-  ( G dom DProd  ( S  |`  C )  ->  ( G DProd  ( S  |`  C ) )  e.  (SubGrp `  G ) )
1556, 154syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( G DProd  ( S  |`  C ) )  e.  (SubGrp `  G )
)
156155adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  X  e.  C )  ->  ( G DProd  ( S  |`  C ) )  e.  (SubGrp `  G ) )
157122lsmlub 18078 . . . . . . . . 9  |-  ( ( ( S `  X
)  e.  (SubGrp `  G )  /\  ( K `  U. ( S
" ( C  \  { X } ) ) )  e.  (SubGrp `  G )  /\  ( G DProd  ( S  |`  C ) )  e.  (SubGrp `  G ) )  -> 
( ( ( S `
 X )  C_  ( G DProd  ( S  |`  C ) )  /\  ( K `  U. ( S " ( C  \  { X } ) ) )  C_  ( G DProd  ( S  |`  C )
) )  <->  ( ( S `  X )
( LSSum `  G )
( K `  U. ( S " ( C 
\  { X }
) ) ) ) 
C_  ( G DProd  ( S  |`  C ) ) ) )
158147, 118, 156, 157syl3anc 1326 . . . . . . . 8  |-  ( (
ph  /\  X  e.  C )  ->  (
( ( S `  X )  C_  ( G DProd  ( S  |`  C ) )  /\  ( K `
 U. ( S
" ( C  \  { X } ) ) )  C_  ( G DProd  ( S  |`  C )
) )  <->  ( ( S `  X )
( LSSum `  G )
( K `  U. ( S " ( C 
\  { X }
) ) ) ) 
C_  ( G DProd  ( S  |`  C ) ) ) )
159153, 136, 158mpbi2and 956 . . . . . . 7  |-  ( (
ph  /\  X  e.  C )  ->  (
( S `  X
) ( LSSum `  G
) ( K `  U. ( S " ( C  \  { X }
) ) ) ) 
C_  ( G DProd  ( S  |`  C ) ) )
160 ssrin 3838 . . . . . . 7  |-  ( ( ( S `  X
) ( LSSum `  G
) ( K `  U. ( S " ( C  \  { X }
) ) ) ) 
C_  ( G DProd  ( S  |`  C ) )  ->  ( ( ( S `  X ) ( LSSum `  G )
( K `  U. ( S " ( C 
\  { X }
) ) ) )  i^i  ( G DProd  ( S  |`  D ) ) )  C_  ( ( G DProd  ( S  |`  C ) )  i^i  ( G DProd 
( S  |`  D ) ) ) )
161159, 160syl 17 . . . . . 6  |-  ( (
ph  /\  X  e.  C )  ->  (
( ( S `  X ) ( LSSum `  G ) ( K `
 U. ( S
" ( C  \  { X } ) ) ) )  i^i  ( G DProd  ( S  |`  D ) ) )  C_  (
( G DProd  ( S  |`  C ) )  i^i  ( G DProd  ( S  |`  D ) ) ) )
162 dmdprdsplit2.4 . . . . . . 7  |-  ( ph  ->  ( ( G DProd  ( S  |`  C ) )  i^i  ( G DProd  ( S  |`  D ) ) )  =  {  .0.  } )
163162adantr 481 . . . . . 6  |-  ( (
ph  /\  X  e.  C )  ->  (
( G DProd  ( S  |`  C ) )  i^i  ( G DProd  ( S  |`  D ) ) )  =  {  .0.  }
)
164161, 163sseqtrd 3641 . . . . 5  |-  ( (
ph  /\  X  e.  C )  ->  (
( ( S `  X ) ( LSSum `  G ) ( K `
 U. ( S
" ( C  \  { X } ) ) ) )  i^i  ( G DProd  ( S  |`  D ) ) )  C_  {  .0.  } )
165122lsmub1 18071 . . . . . . . . 9  |-  ( ( ( S `  X
)  e.  (SubGrp `  G )  /\  ( K `  U. ( S
" ( C  \  { X } ) ) )  e.  (SubGrp `  G ) )  -> 
( S `  X
)  C_  ( ( S `  X )
( LSSum `  G )
( K `  U. ( S " ( C 
\  { X }
) ) ) ) )
166147, 118, 165syl2anc 693 . . . . . . . 8  |-  ( (
ph  /\  X  e.  C )  ->  ( S `  X )  C_  ( ( S `  X ) ( LSSum `  G ) ( K `
 U. ( S
" ( C  \  { X } ) ) ) ) )
167148subg0cl 17602 . . . . . . . . 9  |-  ( ( S `  X )  e.  (SubGrp `  G
)  ->  .0.  e.  ( S `  X ) )
168147, 167syl 17 . . . . . . . 8  |-  ( (
ph  /\  X  e.  C )  ->  .0.  e.  ( S `  X
) )
169166, 168sseldd 3604 . . . . . . 7  |-  ( (
ph  /\  X  e.  C )  ->  .0.  e.  ( ( S `  X ) ( LSSum `  G ) ( K `
 U. ( S
" ( C  \  { X } ) ) ) ) )
170148subg0cl 17602 . . . . . . . 8  |-  ( ( G DProd  ( S  |`  D ) )  e.  (SubGrp `  G )  ->  .0.  e.  ( G DProd 
( S  |`  D ) ) )
171121, 170syl 17 . . . . . . 7  |-  ( (
ph  /\  X  e.  C )  ->  .0.  e.  ( G DProd  ( S  |`  D ) ) )
172169, 171elind 3798 . . . . . 6  |-  ( (
ph  /\  X  e.  C )  ->  .0.  e.  ( ( ( S `
 X ) (
LSSum `  G ) ( K `  U. ( S " ( C  \  { X } ) ) ) )  i^i  ( G DProd  ( S  |`  D ) ) ) )
173172snssd 4340 . . . . 5  |-  ( (
ph  /\  X  e.  C )  ->  {  .0.  } 
C_  ( ( ( S `  X ) ( LSSum `  G )
( K `  U. ( S " ( C 
\  { X }
) ) ) )  i^i  ( G DProd  ( S  |`  D ) ) ) )
174164, 173eqssd 3620 . . . 4  |-  ( (
ph  /\  X  e.  C )  ->  (
( ( S `  X ) ( LSSum `  G ) ( K `
 U. ( S
" ( C  \  { X } ) ) ) )  i^i  ( G DProd  ( S  |`  D ) ) )  =  {  .0.  } )
175 resima2 5432 . . . . . . . . 9  |-  ( ( C  \  { X } )  C_  C  ->  ( ( S  |`  C ) " ( C  \  { X }
) )  =  ( S " ( C 
\  { X }
) ) )
17686, 175mp1i 13 . . . . . . . 8  |-  ( (
ph  /\  X  e.  C )  ->  (
( S  |`  C )
" ( C  \  { X } ) )  =  ( S "
( C  \  { X } ) ) )
177176unieqd 4446 . . . . . . 7  |-  ( (
ph  /\  X  e.  C )  ->  U. (
( S  |`  C )
" ( C  \  { X } ) )  =  U. ( S
" ( C  \  { X } ) ) )
178177fveq2d 6195 . . . . . 6  |-  ( (
ph  /\  X  e.  C )  ->  ( K `  U. ( ( S  |`  C ) " ( C  \  { X } ) ) )  =  ( K `
 U. ( S
" ( C  \  { X } ) ) ) )
179149, 178ineq12d 3815 . . . . 5  |-  ( (
ph  /\  X  e.  C )  ->  (
( ( S  |`  C ) `  X
)  i^i  ( K `  U. ( ( S  |`  C ) " ( C  \  { X }
) ) ) )  =  ( ( S `
 X )  i^i  ( K `  U. ( S " ( C 
\  { X }
) ) ) ) )
180150, 151, 65, 148, 85dprddisj 18408 . . . . 5  |-  ( (
ph  /\  X  e.  C )  ->  (
( ( S  |`  C ) `  X
)  i^i  ( K `  U. ( ( S  |`  C ) " ( C  \  { X }
) ) ) )  =  {  .0.  }
)
181179, 180eqtr3d 2658 . . . 4  |-  ( (
ph  /\  X  e.  C )  ->  (
( S `  X
)  i^i  ( K `  U. ( S "
( C  \  { X } ) ) ) )  =  {  .0.  } )
1828adantr 481 . . . . . . . 8  |-  ( (
ph  /\  X  e.  C )  ->  S : I --> (SubGrp `  G ) )
183 ffun 6048 . . . . . . . 8  |-  ( S : I --> (SubGrp `  G )  ->  Fun  S )
184 funiunfv 6506 . . . . . . . 8  |-  ( Fun 
S  ->  U_ y  e.  ( C  \  { X } ) ( S `
 y )  = 
U. ( S "
( C  \  { X } ) ) )
185182, 183, 1843syl 18 . . . . . . 7  |-  ( (
ph  /\  X  e.  C )  ->  U_ y  e.  ( C  \  { X } ) ( S `
 y )  = 
U. ( S "
( C  \  { X } ) ) )
1866ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ph  /\  X  e.  C )  /\  y  e.  ( C  \  { X } ) )  ->  G dom DProd  ( S  |`  C ) )
18713ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ph  /\  X  e.  C )  /\  y  e.  ( C  \  { X } ) )  ->  dom  ( S  |`  C )  =  C )
188 eldifi 3732 . . . . . . . . . . . 12  |-  ( y  e.  ( C  \  { X } )  -> 
y  e.  C )
189188adantl 482 . . . . . . . . . . 11  |-  ( ( ( ph  /\  X  e.  C )  /\  y  e.  ( C  \  { X } ) )  -> 
y  e.  C )
190 simplr 792 . . . . . . . . . . 11  |-  ( ( ( ph  /\  X  e.  C )  /\  y  e.  ( C  \  { X } ) )  ->  X  e.  C )
191 eldifsni 4320 . . . . . . . . . . . 12  |-  ( y  e.  ( C  \  { X } )  -> 
y  =/=  X )
192191adantl 482 . . . . . . . . . . 11  |-  ( ( ( ph  /\  X  e.  C )  /\  y  e.  ( C  \  { X } ) )  -> 
y  =/=  X )
193186, 187, 189, 190, 192, 18dprdcntz 18407 . . . . . . . . . 10  |-  ( ( ( ph  /\  X  e.  C )  /\  y  e.  ( C  \  { X } ) )  -> 
( ( S  |`  C ) `  y
)  C_  ( Z `  ( ( S  |`  C ) `  X
) ) )
194 fvres 6207 . . . . . . . . . . 11  |-  ( y  e.  C  ->  (
( S  |`  C ) `
 y )  =  ( S `  y
) )
195189, 194syl 17 . . . . . . . . . 10  |-  ( ( ( ph  /\  X  e.  C )  /\  y  e.  ( C  \  { X } ) )  -> 
( ( S  |`  C ) `  y
)  =  ( S `
 y ) )
19620ad2antlr 763 . . . . . . . . . . 11  |-  ( ( ( ph  /\  X  e.  C )  /\  y  e.  ( C  \  { X } ) )  -> 
( ( S  |`  C ) `  X
)  =  ( S `
 X ) )
197196fveq2d 6195 . . . . . . . . . 10  |-  ( ( ( ph  /\  X  e.  C )  /\  y  e.  ( C  \  { X } ) )  -> 
( Z `  (
( S  |`  C ) `
 X ) )  =  ( Z `  ( S `  X ) ) )
198193, 195, 1973sstr3d 3647 . . . . . . . . 9  |-  ( ( ( ph  /\  X  e.  C )  /\  y  e.  ( C  \  { X } ) )  -> 
( S `  y
)  C_  ( Z `  ( S `  X
) ) )
199198ralrimiva 2966 . . . . . . . 8  |-  ( (
ph  /\  X  e.  C )  ->  A. y  e.  ( C  \  { X } ) ( S `
 y )  C_  ( Z `  ( S `
 X ) ) )
200 iunss 4561 . . . . . . . 8  |-  ( U_ y  e.  ( C  \  { X } ) ( S `  y
)  C_  ( Z `  ( S `  X
) )  <->  A. y  e.  ( C  \  { X } ) ( S `
 y )  C_  ( Z `  ( S `
 X ) ) )
201199, 200sylibr 224 . . . . . . 7  |-  ( (
ph  /\  X  e.  C )  ->  U_ y  e.  ( C  \  { X } ) ( S `
 y )  C_  ( Z `  ( S `
 X ) ) )
202185, 201eqsstr3d 3640 . . . . . 6  |-  ( (
ph  /\  X  e.  C )  ->  U. ( S " ( C  \  { X } ) ) 
C_  ( Z `  ( S `  X ) ) )
20335subgss 17595 . . . . . . . 8  |-  ( ( S `  X )  e.  (SubGrp `  G
)  ->  ( S `  X )  C_  ( Base `  G ) )
204147, 203syl 17 . . . . . . 7  |-  ( (
ph  /\  X  e.  C )  ->  ( S `  X )  C_  ( Base `  G
) )
20535, 18cntzsubg 17769 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( S `  X ) 
C_  ( Base `  G
) )  ->  ( Z `  ( S `  X ) )  e.  (SubGrp `  G )
)
20659, 204, 205syl2anc 693 . . . . . 6  |-  ( (
ph  /\  X  e.  C )  ->  ( Z `  ( S `  X ) )  e.  (SubGrp `  G )
)
20785mrcsscl 16280 . . . . . 6  |-  ( ( (SubGrp `  G )  e.  (Moore `  ( Base `  G ) )  /\  U. ( S " ( C  \  { X }
) )  C_  ( Z `  ( S `  X ) )  /\  ( Z `  ( S `
 X ) )  e.  (SubGrp `  G
) )  ->  ( K `  U. ( S
" ( C  \  { X } ) ) )  C_  ( Z `  ( S `  X
) ) )
20862, 202, 206, 207syl3anc 1326 . . . . 5  |-  ( (
ph  /\  X  e.  C )  ->  ( K `  U. ( S
" ( C  \  { X } ) ) )  C_  ( Z `  ( S `  X
) ) )
20918, 118, 147, 208cntzrecd 18091 . . . 4  |-  ( (
ph  /\  X  e.  C )  ->  ( S `  X )  C_  ( Z `  ( K `  U. ( S
" ( C  \  { X } ) ) ) ) )
210122, 147, 118, 121, 148, 174, 181, 18, 209lsmdisj3 18096 . . 3  |-  ( (
ph  /\  X  e.  C )  ->  (
( S `  X
)  i^i  ( ( K `  U. ( S
" ( C  \  { X } ) ) ) ( LSSum `  G
) ( G DProd  ( S  |`  D ) ) ) )  =  {  .0.  } )
211144, 210sseqtrd 3641 . 2  |-  ( (
ph  /\  X  e.  C )  ->  (
( S `  X
)  i^i  ( K `  U. ( S "
( I  \  { X } ) ) ) )  C_  {  .0.  } )
21256, 211jca 554 1  |-  ( (
ph  /\  X  e.  C )  ->  (
( Y  e.  I  ->  ( X  =/=  Y  ->  ( S `  X
)  C_  ( Z `  ( S `  Y
) ) ) )  /\  ( ( S `
 X )  i^i  ( K `  U. ( S " ( I 
\  { X }
) ) ) ) 
C_  {  .0.  } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912    \ cdif 3571    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   {csn 4177   U.cuni 4436   U_ciun 4520   class class class wbr 4653   dom cdm 5114   ran crn 5115    |` cres 5116   "cima 5117   Fun wfun 5882   -->wf 5884   ` cfv 5888  (class class class)co 6650   Basecbs 15857   0gc0g 16100  Moorecmre 16242  mrClscmrc 16243  ACScacs 16245   Grpcgrp 17422  SubGrpcsubg 17588  Cntzccntz 17748   LSSumclsm 18049   DProd cdprd 18392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-gsum 16103  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-ghm 17658  df-gim 17701  df-cntz 17750  df-oppg 17776  df-lsm 18051  df-cmn 18195  df-dprd 18394
This theorem is referenced by:  dmdprdsplit2  18445
  Copyright terms: Public domain W3C validator