MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eengv Structured version   Visualization version   Unicode version

Theorem eengv 25859
Description: The value of the Euclidean geometry for dimension  N. (Contributed by Thierry Arnoux, 15-Mar-2019.)
Assertion
Ref Expression
eengv  |-  ( N  e.  NN  ->  (EEG `  N )  =  ( { <. ( Base `  ndx ) ,  ( EE `  N ) >. ,  <. (
dist `  ndx ) ,  ( x  e.  ( EE `  N ) ,  y  e.  ( EE `  N ) 
|->  sum_ i  e.  ( 1 ... N ) ( ( ( x `
 i )  -  ( y `  i
) ) ^ 2 ) ) >. }  u.  {
<. (Itv `  ndx ) ,  ( x  e.  ( EE `  N ) ,  y  e.  ( EE `  N ) 
|->  { z  e.  ( EE `  N )  |  z  Btwn  <. x ,  y >. } )
>. ,  <. (LineG `  ndx ) ,  ( x  e.  ( EE `  N ) ,  y  e.  ( ( EE
`  N )  \  { x } ) 
|->  { z  e.  ( EE `  N )  |  ( z  Btwn  <.
x ,  y >.  \/  x  Btwn  <. z ,  y >.  \/  y  Btwn  <. x ,  z
>. ) } ) >. } ) )
Distinct variable group:    x, i, y, z, N

Proof of Theorem eengv
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 fveq2 6191 . . . . 5  |-  ( n  =  N  ->  ( EE `  n )  =  ( EE `  N
) )
21opeq2d 4409 . . . 4  |-  ( n  =  N  ->  <. ( Base `  ndx ) ,  ( EE `  n
) >.  =  <. ( Base `  ndx ) ,  ( EE `  N
) >. )
31adantr 481 . . . . . 6  |-  ( ( n  =  N  /\  x  e.  ( EE `  n ) )  -> 
( EE `  n
)  =  ( EE
`  N ) )
4 simpl 473 . . . . . . . 8  |-  ( ( n  =  N  /\  ( x  e.  ( EE `  n )  /\  y  e.  ( EE `  n ) ) )  ->  n  =  N )
54oveq2d 6666 . . . . . . 7  |-  ( ( n  =  N  /\  ( x  e.  ( EE `  n )  /\  y  e.  ( EE `  n ) ) )  ->  ( 1 ... n )  =  ( 1 ... N ) )
65sumeq1d 14431 . . . . . 6  |-  ( ( n  =  N  /\  ( x  e.  ( EE `  n )  /\  y  e.  ( EE `  n ) ) )  ->  sum_ i  e.  ( 1 ... n ) ( ( ( x `
 i )  -  ( y `  i
) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N
) ( ( ( x `  i )  -  ( y `  i ) ) ^
2 ) )
71, 3, 6mpt2eq123dva 6716 . . . . 5  |-  ( n  =  N  ->  (
x  e.  ( EE
`  n ) ,  y  e.  ( EE
`  n )  |->  sum_ i  e.  ( 1 ... n ) ( ( ( x `  i )  -  (
y `  i )
) ^ 2 ) )  =  ( x  e.  ( EE `  N ) ,  y  e.  ( EE `  N )  |->  sum_ i  e.  ( 1 ... N
) ( ( ( x `  i )  -  ( y `  i ) ) ^
2 ) ) )
87opeq2d 4409 . . . 4  |-  ( n  =  N  ->  <. ( dist `  ndx ) ,  ( x  e.  ( EE `  n ) ,  y  e.  ( EE `  n ) 
|->  sum_ i  e.  ( 1 ... n ) ( ( ( x `
 i )  -  ( y `  i
) ) ^ 2 ) ) >.  =  <. (
dist `  ndx ) ,  ( x  e.  ( EE `  N ) ,  y  e.  ( EE `  N ) 
|->  sum_ i  e.  ( 1 ... N ) ( ( ( x `
 i )  -  ( y `  i
) ) ^ 2 ) ) >. )
92, 8preq12d 4276 . . 3  |-  ( n  =  N  ->  { <. (
Base `  ndx ) ,  ( EE `  n
) >. ,  <. ( dist `  ndx ) ,  ( x  e.  ( EE `  n ) ,  y  e.  ( EE `  n ) 
|->  sum_ i  e.  ( 1 ... n ) ( ( ( x `
 i )  -  ( y `  i
) ) ^ 2 ) ) >. }  =  { <. ( Base `  ndx ) ,  ( EE `  N ) >. ,  <. (
dist `  ndx ) ,  ( x  e.  ( EE `  N ) ,  y  e.  ( EE `  N ) 
|->  sum_ i  e.  ( 1 ... N ) ( ( ( x `
 i )  -  ( y `  i
) ) ^ 2 ) ) >. } )
101adantr 481 . . . . . . 7  |-  ( ( n  =  N  /\  ( x  e.  ( EE `  n )  /\  y  e.  ( EE `  n ) ) )  ->  ( EE `  n )  =  ( EE `  N ) )
1110rabeqdv 3194 . . . . . 6  |-  ( ( n  =  N  /\  ( x  e.  ( EE `  n )  /\  y  e.  ( EE `  n ) ) )  ->  { z  e.  ( EE `  n
)  |  z  Btwn  <.
x ,  y >. }  =  { z  e.  ( EE `  N
)  |  z  Btwn  <.
x ,  y >. } )
121, 3, 11mpt2eq123dva 6716 . . . . 5  |-  ( n  =  N  ->  (
x  e.  ( EE
`  n ) ,  y  e.  ( EE
`  n )  |->  { z  e.  ( EE
`  n )  |  z  Btwn  <. x ,  y >. } )  =  ( x  e.  ( EE `  N ) ,  y  e.  ( EE `  N ) 
|->  { z  e.  ( EE `  N )  |  z  Btwn  <. x ,  y >. } ) )
1312opeq2d 4409 . . . 4  |-  ( n  =  N  ->  <. (Itv ` 
ndx ) ,  ( x  e.  ( EE
`  n ) ,  y  e.  ( EE
`  n )  |->  { z  e.  ( EE
`  n )  |  z  Btwn  <. x ,  y >. } ) >.  =  <. (Itv `  ndx ) ,  ( x  e.  ( EE `  N
) ,  y  e.  ( EE `  N
)  |->  { z  e.  ( EE `  N
)  |  z  Btwn  <.
x ,  y >. } ) >. )
143difeq1d 3727 . . . . . 6  |-  ( ( n  =  N  /\  x  e.  ( EE `  n ) )  -> 
( ( EE `  n )  \  {
x } )  =  ( ( EE `  N )  \  {
x } ) )
151rabeqdv 3194 . . . . . . 7  |-  ( n  =  N  ->  { z  e.  ( EE `  n )  |  ( z  Btwn  <. x ,  y >.  \/  x  Btwn  <. z ,  y
>.  \/  y  Btwn  <. x ,  z >. ) }  =  { z  e.  ( EE `  N
)  |  ( z 
Btwn  <. x ,  y
>.  \/  x  Btwn  <. z ,  y >.  \/  y  Btwn  <. x ,  z
>. ) } )
1615adantr 481 . . . . . 6  |-  ( ( n  =  N  /\  ( x  e.  ( EE `  n )  /\  y  e.  ( ( EE `  n )  \  { x } ) ) )  ->  { z  e.  ( EE `  n )  |  ( z  Btwn  <. x ,  y >.  \/  x  Btwn  <. z ,  y
>.  \/  y  Btwn  <. x ,  z >. ) }  =  { z  e.  ( EE `  N
)  |  ( z 
Btwn  <. x ,  y
>.  \/  x  Btwn  <. z ,  y >.  \/  y  Btwn  <. x ,  z
>. ) } )
171, 14, 16mpt2eq123dva 6716 . . . . 5  |-  ( n  =  N  ->  (
x  e.  ( EE
`  n ) ,  y  e.  ( ( EE `  n ) 
\  { x }
)  |->  { z  e.  ( EE `  n
)  |  ( z 
Btwn  <. x ,  y
>.  \/  x  Btwn  <. z ,  y >.  \/  y  Btwn  <. x ,  z
>. ) } )  =  ( x  e.  ( EE `  N ) ,  y  e.  ( ( EE `  N
)  \  { x } )  |->  { z  e.  ( EE `  N )  |  ( z  Btwn  <. x ,  y >.  \/  x  Btwn  <. z ,  y
>.  \/  y  Btwn  <. x ,  z >. ) } ) )
1817opeq2d 4409 . . . 4  |-  ( n  =  N  ->  <. (LineG ` 
ndx ) ,  ( x  e.  ( EE
`  n ) ,  y  e.  ( ( EE `  n ) 
\  { x }
)  |->  { z  e.  ( EE `  n
)  |  ( z 
Btwn  <. x ,  y
>.  \/  x  Btwn  <. z ,  y >.  \/  y  Btwn  <. x ,  z
>. ) } ) >.  =  <. (LineG `  ndx ) ,  ( x  e.  ( EE `  N
) ,  y  e.  ( ( EE `  N )  \  {
x } )  |->  { z  e.  ( EE
`  N )  |  ( z  Btwn  <. x ,  y >.  \/  x  Btwn  <. z ,  y
>.  \/  y  Btwn  <. x ,  z >. ) } ) >. )
1913, 18preq12d 4276 . . 3  |-  ( n  =  N  ->  { <. (Itv
`  ndx ) ,  ( x  e.  ( EE
`  n ) ,  y  e.  ( EE
`  n )  |->  { z  e.  ( EE
`  n )  |  z  Btwn  <. x ,  y >. } ) >. ,  <. (LineG `  ndx ) ,  ( x  e.  ( EE `  n
) ,  y  e.  ( ( EE `  n )  \  {
x } )  |->  { z  e.  ( EE
`  n )  |  ( z  Btwn  <. x ,  y >.  \/  x  Btwn  <. z ,  y
>.  \/  y  Btwn  <. x ,  z >. ) } ) >. }  =  { <. (Itv `  ndx ) ,  ( x  e.  ( EE `  N
) ,  y  e.  ( EE `  N
)  |->  { z  e.  ( EE `  N
)  |  z  Btwn  <.
x ,  y >. } ) >. ,  <. (LineG `  ndx ) ,  ( x  e.  ( EE
`  N ) ,  y  e.  ( ( EE `  N ) 
\  { x }
)  |->  { z  e.  ( EE `  N
)  |  ( z 
Btwn  <. x ,  y
>.  \/  x  Btwn  <. z ,  y >.  \/  y  Btwn  <. x ,  z
>. ) } ) >. } )
209, 19uneq12d 3768 . 2  |-  ( n  =  N  ->  ( { <. ( Base `  ndx ) ,  ( EE `  n ) >. ,  <. (
dist `  ndx ) ,  ( x  e.  ( EE `  n ) ,  y  e.  ( EE `  n ) 
|->  sum_ i  e.  ( 1 ... n ) ( ( ( x `
 i )  -  ( y `  i
) ) ^ 2 ) ) >. }  u.  {
<. (Itv `  ndx ) ,  ( x  e.  ( EE `  n ) ,  y  e.  ( EE `  n ) 
|->  { z  e.  ( EE `  n )  |  z  Btwn  <. x ,  y >. } )
>. ,  <. (LineG `  ndx ) ,  ( x  e.  ( EE `  n ) ,  y  e.  ( ( EE
`  n )  \  { x } ) 
|->  { z  e.  ( EE `  n )  |  ( z  Btwn  <.
x ,  y >.  \/  x  Btwn  <. z ,  y >.  \/  y  Btwn  <. x ,  z
>. ) } ) >. } )  =  ( { <. ( Base `  ndx ) ,  ( EE `  N ) >. ,  <. (
dist `  ndx ) ,  ( x  e.  ( EE `  N ) ,  y  e.  ( EE `  N ) 
|->  sum_ i  e.  ( 1 ... N ) ( ( ( x `
 i )  -  ( y `  i
) ) ^ 2 ) ) >. }  u.  {
<. (Itv `  ndx ) ,  ( x  e.  ( EE `  N ) ,  y  e.  ( EE `  N ) 
|->  { z  e.  ( EE `  N )  |  z  Btwn  <. x ,  y >. } )
>. ,  <. (LineG `  ndx ) ,  ( x  e.  ( EE `  N ) ,  y  e.  ( ( EE
`  N )  \  { x } ) 
|->  { z  e.  ( EE `  N )  |  ( z  Btwn  <.
x ,  y >.  \/  x  Btwn  <. z ,  y >.  \/  y  Btwn  <. x ,  z
>. ) } ) >. } ) )
21 df-eeng 25858 . 2  |- EEG  =  ( n  e.  NN  |->  ( { <. ( Base `  ndx ) ,  ( EE `  n ) >. ,  <. (
dist `  ndx ) ,  ( x  e.  ( EE `  n ) ,  y  e.  ( EE `  n ) 
|->  sum_ i  e.  ( 1 ... n ) ( ( ( x `
 i )  -  ( y `  i
) ) ^ 2 ) ) >. }  u.  {
<. (Itv `  ndx ) ,  ( x  e.  ( EE `  n ) ,  y  e.  ( EE `  n ) 
|->  { z  e.  ( EE `  n )  |  z  Btwn  <. x ,  y >. } )
>. ,  <. (LineG `  ndx ) ,  ( x  e.  ( EE `  n ) ,  y  e.  ( ( EE
`  n )  \  { x } ) 
|->  { z  e.  ( EE `  n )  |  ( z  Btwn  <.
x ,  y >.  \/  x  Btwn  <. z ,  y >.  \/  y  Btwn  <. x ,  z
>. ) } ) >. } ) )
22 prex 4909 . . 3  |-  { <. (
Base `  ndx ) ,  ( EE `  N
) >. ,  <. ( dist `  ndx ) ,  ( x  e.  ( EE `  N ) ,  y  e.  ( EE `  N ) 
|->  sum_ i  e.  ( 1 ... N ) ( ( ( x `
 i )  -  ( y `  i
) ) ^ 2 ) ) >. }  e.  _V
23 prex 4909 . . 3  |-  { <. (Itv
`  ndx ) ,  ( x  e.  ( EE
`  N ) ,  y  e.  ( EE
`  N )  |->  { z  e.  ( EE
`  N )  |  z  Btwn  <. x ,  y >. } ) >. ,  <. (LineG `  ndx ) ,  ( x  e.  ( EE `  N
) ,  y  e.  ( ( EE `  N )  \  {
x } )  |->  { z  e.  ( EE
`  N )  |  ( z  Btwn  <. x ,  y >.  \/  x  Btwn  <. z ,  y
>.  \/  y  Btwn  <. x ,  z >. ) } ) >. }  e.  _V
2422, 23unex 6956 . 2  |-  ( {
<. ( Base `  ndx ) ,  ( EE `  N ) >. ,  <. (
dist `  ndx ) ,  ( x  e.  ( EE `  N ) ,  y  e.  ( EE `  N ) 
|->  sum_ i  e.  ( 1 ... N ) ( ( ( x `
 i )  -  ( y `  i
) ) ^ 2 ) ) >. }  u.  {
<. (Itv `  ndx ) ,  ( x  e.  ( EE `  N ) ,  y  e.  ( EE `  N ) 
|->  { z  e.  ( EE `  N )  |  z  Btwn  <. x ,  y >. } )
>. ,  <. (LineG `  ndx ) ,  ( x  e.  ( EE `  N ) ,  y  e.  ( ( EE
`  N )  \  { x } ) 
|->  { z  e.  ( EE `  N )  |  ( z  Btwn  <.
x ,  y >.  \/  x  Btwn  <. z ,  y >.  \/  y  Btwn  <. x ,  z
>. ) } ) >. } )  e.  _V
2520, 21, 24fvmpt 6282 1  |-  ( N  e.  NN  ->  (EEG `  N )  =  ( { <. ( Base `  ndx ) ,  ( EE `  N ) >. ,  <. (
dist `  ndx ) ,  ( x  e.  ( EE `  N ) ,  y  e.  ( EE `  N ) 
|->  sum_ i  e.  ( 1 ... N ) ( ( ( x `
 i )  -  ( y `  i
) ) ^ 2 ) ) >. }  u.  {
<. (Itv `  ndx ) ,  ( x  e.  ( EE `  N ) ,  y  e.  ( EE `  N ) 
|->  { z  e.  ( EE `  N )  |  z  Btwn  <. x ,  y >. } )
>. ,  <. (LineG `  ndx ) ,  ( x  e.  ( EE `  N ) ,  y  e.  ( ( EE
`  N )  \  { x } ) 
|->  { z  e.  ( EE `  N )  |  ( z  Btwn  <.
x ,  y >.  \/  x  Btwn  <. z ,  y >.  \/  y  Btwn  <. x ,  z
>. ) } ) >. } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    \/ w3o 1036    = wceq 1483    e. wcel 1990   {crab 2916    \ cdif 3571    u. cun 3572   {csn 4177   {cpr 4179   <.cop 4183   class class class wbr 4653   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   1c1 9937    - cmin 10266   NNcn 11020   2c2 11070   ...cfz 12326   ^cexp 12860   sum_csu 14416   ndxcnx 15854   Basecbs 15857   distcds 15950  Itvcitv 25335  LineGclng 25336   EEcee 25768    Btwn cbtwn 25769  EEGceeng 25857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-iota 5851  df-fun 5890  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-seq 12802  df-sum 14417  df-eeng 25858
This theorem is referenced by:  eengstr  25860  eengbas  25861  ebtwntg  25862  ecgrtg  25863  elntg  25864
  Copyright terms: Public domain W3C validator