HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  eigorth Structured version   Visualization version   Unicode version

Theorem eigorth 28697
Description: A necessary and sufficient condition (that holds when  T is a Hermitian operator) for two eigenvectors 
A and  B to be orthogonal. Generalization of Equation 1.31 of [Hughes] p. 49. (Contributed by NM, 23-Mar-2006.) (New usage is discouraged.)
Assertion
Ref Expression
eigorth  |-  ( ( ( ( A  e. 
~H  /\  B  e.  ~H )  /\  ( C  e.  CC  /\  D  e.  CC ) )  /\  ( ( ( T `
 A )  =  ( C  .h  A
)  /\  ( T `  B )  =  ( D  .h  B ) )  /\  C  =/=  ( * `  D
) ) )  -> 
( ( A  .ih  ( T `  B ) )  =  ( ( T `  A ) 
.ih  B )  <->  ( A  .ih  B )  =  0 ) )

Proof of Theorem eigorth
StepHypRef Expression
1 fveq2 6191 . . . . . . 7  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  ( T `  A )  =  ( T `  if ( A  e.  ~H ,  A ,  0h )
) )
2 oveq2 6658 . . . . . . 7  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  ( C  .h  A )  =  ( C  .h  if ( A  e.  ~H ,  A ,  0h )
) )
31, 2eqeq12d 2637 . . . . . 6  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  (
( T `  A
)  =  ( C  .h  A )  <->  ( T `  if ( A  e. 
~H ,  A ,  0h ) )  =  ( C  .h  if ( A  e.  ~H ,  A ,  0h )
) ) )
43anbi1d 741 . . . . 5  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  (
( ( T `  A )  =  ( C  .h  A )  /\  ( T `  B )  =  ( D  .h  B ) )  <->  ( ( T `
 if ( A  e.  ~H ,  A ,  0h ) )  =  ( C  .h  if ( A  e.  ~H ,  A ,  0h )
)  /\  ( T `  B )  =  ( D  .h  B ) ) ) )
54anbi1d 741 . . . 4  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  (
( ( ( T `
 A )  =  ( C  .h  A
)  /\  ( T `  B )  =  ( D  .h  B ) )  /\  C  =/=  ( * `  D
) )  <->  ( (
( T `  if ( A  e.  ~H ,  A ,  0h )
)  =  ( C  .h  if ( A  e.  ~H ,  A ,  0h ) )  /\  ( T `  B )  =  ( D  .h  B ) )  /\  C  =/=  ( * `  D ) ) ) )
6 oveq1 6657 . . . . . 6  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  ( A  .ih  ( T `  B ) )  =  ( if ( A  e.  ~H ,  A ,  0h )  .ih  ( T `  B )
) )
71oveq1d 6665 . . . . . 6  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  (
( T `  A
)  .ih  B )  =  ( ( T `
 if ( A  e.  ~H ,  A ,  0h ) )  .ih  B ) )
86, 7eqeq12d 2637 . . . . 5  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  (
( A  .ih  ( T `  B )
)  =  ( ( T `  A ) 
.ih  B )  <->  ( if ( A  e.  ~H ,  A ,  0h )  .ih  ( T `  B
) )  =  ( ( T `  if ( A  e.  ~H ,  A ,  0h )
)  .ih  B )
) )
9 oveq1 6657 . . . . . 6  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  ( A  .ih  B )  =  ( if ( A  e.  ~H ,  A ,  0h )  .ih  B
) )
109eqeq1d 2624 . . . . 5  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  (
( A  .ih  B
)  =  0  <->  ( if ( A  e.  ~H ,  A ,  0h )  .ih  B )  =  0 ) )
118, 10bibi12d 335 . . . 4  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  (
( ( A  .ih  ( T `  B ) )  =  ( ( T `  A ) 
.ih  B )  <->  ( A  .ih  B )  =  0 )  <->  ( ( if ( A  e.  ~H ,  A ,  0h )  .ih  ( T `  B
) )  =  ( ( T `  if ( A  e.  ~H ,  A ,  0h )
)  .ih  B )  <->  ( if ( A  e. 
~H ,  A ,  0h )  .ih  B )  =  0 ) ) )
125, 11imbi12d 334 . . 3  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  (
( ( ( ( T `  A )  =  ( C  .h  A )  /\  ( T `  B )  =  ( D  .h  B ) )  /\  C  =/=  ( * `  D ) )  -> 
( ( A  .ih  ( T `  B ) )  =  ( ( T `  A ) 
.ih  B )  <->  ( A  .ih  B )  =  0 ) )  <->  ( (
( ( T `  if ( A  e.  ~H ,  A ,  0h )
)  =  ( C  .h  if ( A  e.  ~H ,  A ,  0h ) )  /\  ( T `  B )  =  ( D  .h  B ) )  /\  C  =/=  ( * `  D ) )  -> 
( ( if ( A  e.  ~H ,  A ,  0h )  .ih  ( T `  B
) )  =  ( ( T `  if ( A  e.  ~H ,  A ,  0h )
)  .ih  B )  <->  ( if ( A  e. 
~H ,  A ,  0h )  .ih  B )  =  0 ) ) ) )
13 fveq2 6191 . . . . . . 7  |-  ( B  =  if ( B  e.  ~H ,  B ,  0h )  ->  ( T `  B )  =  ( T `  if ( B  e.  ~H ,  B ,  0h )
) )
14 oveq2 6658 . . . . . . 7  |-  ( B  =  if ( B  e.  ~H ,  B ,  0h )  ->  ( D  .h  B )  =  ( D  .h  if ( B  e.  ~H ,  B ,  0h )
) )
1513, 14eqeq12d 2637 . . . . . 6  |-  ( B  =  if ( B  e.  ~H ,  B ,  0h )  ->  (
( T `  B
)  =  ( D  .h  B )  <->  ( T `  if ( B  e. 
~H ,  B ,  0h ) )  =  ( D  .h  if ( B  e.  ~H ,  B ,  0h )
) ) )
1615anbi2d 740 . . . . 5  |-  ( B  =  if ( B  e.  ~H ,  B ,  0h )  ->  (
( ( T `  if ( A  e.  ~H ,  A ,  0h )
)  =  ( C  .h  if ( A  e.  ~H ,  A ,  0h ) )  /\  ( T `  B )  =  ( D  .h  B ) )  <->  ( ( T `  if ( A  e.  ~H ,  A ,  0h ) )  =  ( C  .h  if ( A  e.  ~H ,  A ,  0h )
)  /\  ( T `  if ( B  e. 
~H ,  B ,  0h ) )  =  ( D  .h  if ( B  e.  ~H ,  B ,  0h )
) ) ) )
1716anbi1d 741 . . . 4  |-  ( B  =  if ( B  e.  ~H ,  B ,  0h )  ->  (
( ( ( T `
 if ( A  e.  ~H ,  A ,  0h ) )  =  ( C  .h  if ( A  e.  ~H ,  A ,  0h )
)  /\  ( T `  B )  =  ( D  .h  B ) )  /\  C  =/=  ( * `  D
) )  <->  ( (
( T `  if ( A  e.  ~H ,  A ,  0h )
)  =  ( C  .h  if ( A  e.  ~H ,  A ,  0h ) )  /\  ( T `  if ( B  e.  ~H ,  B ,  0h )
)  =  ( D  .h  if ( B  e.  ~H ,  B ,  0h ) ) )  /\  C  =/=  (
* `  D )
) ) )
1813oveq2d 6666 . . . . . 6  |-  ( B  =  if ( B  e.  ~H ,  B ,  0h )  ->  ( if ( A  e.  ~H ,  A ,  0h )  .ih  ( T `  B
) )  =  ( if ( A  e. 
~H ,  A ,  0h )  .ih  ( T `
 if ( B  e.  ~H ,  B ,  0h ) ) ) )
19 oveq2 6658 . . . . . 6  |-  ( B  =  if ( B  e.  ~H ,  B ,  0h )  ->  (
( T `  if ( A  e.  ~H ,  A ,  0h )
)  .ih  B )  =  ( ( T `
 if ( A  e.  ~H ,  A ,  0h ) )  .ih  if ( B  e.  ~H ,  B ,  0h )
) )
2018, 19eqeq12d 2637 . . . . 5  |-  ( B  =  if ( B  e.  ~H ,  B ,  0h )  ->  (
( if ( A  e.  ~H ,  A ,  0h )  .ih  ( T `  B )
)  =  ( ( T `  if ( A  e.  ~H ,  A ,  0h )
)  .ih  B )  <->  ( if ( A  e. 
~H ,  A ,  0h )  .ih  ( T `
 if ( B  e.  ~H ,  B ,  0h ) ) )  =  ( ( T `
 if ( A  e.  ~H ,  A ,  0h ) )  .ih  if ( B  e.  ~H ,  B ,  0h )
) ) )
21 oveq2 6658 . . . . . 6  |-  ( B  =  if ( B  e.  ~H ,  B ,  0h )  ->  ( if ( A  e.  ~H ,  A ,  0h )  .ih  B )  =  ( if ( A  e. 
~H ,  A ,  0h )  .ih  if ( B  e.  ~H ,  B ,  0h )
) )
2221eqeq1d 2624 . . . . 5  |-  ( B  =  if ( B  e.  ~H ,  B ,  0h )  ->  (
( if ( A  e.  ~H ,  A ,  0h )  .ih  B
)  =  0  <->  ( if ( A  e.  ~H ,  A ,  0h )  .ih  if ( B  e. 
~H ,  B ,  0h ) )  =  0 ) )
2320, 22bibi12d 335 . . . 4  |-  ( B  =  if ( B  e.  ~H ,  B ,  0h )  ->  (
( ( if ( A  e.  ~H ,  A ,  0h )  .ih  ( T `  B
) )  =  ( ( T `  if ( A  e.  ~H ,  A ,  0h )
)  .ih  B )  <->  ( if ( A  e. 
~H ,  A ,  0h )  .ih  B )  =  0 )  <->  ( ( if ( A  e.  ~H ,  A ,  0h )  .ih  ( T `  if ( B  e.  ~H ,  B ,  0h )
) )  =  ( ( T `  if ( A  e.  ~H ,  A ,  0h )
)  .ih  if ( B  e.  ~H ,  B ,  0h ) )  <->  ( if ( A  e.  ~H ,  A ,  0h )  .ih  if ( B  e. 
~H ,  B ,  0h ) )  =  0 ) ) )
2417, 23imbi12d 334 . . 3  |-  ( B  =  if ( B  e.  ~H ,  B ,  0h )  ->  (
( ( ( ( T `  if ( A  e.  ~H ,  A ,  0h )
)  =  ( C  .h  if ( A  e.  ~H ,  A ,  0h ) )  /\  ( T `  B )  =  ( D  .h  B ) )  /\  C  =/=  ( * `  D ) )  -> 
( ( if ( A  e.  ~H ,  A ,  0h )  .ih  ( T `  B
) )  =  ( ( T `  if ( A  e.  ~H ,  A ,  0h )
)  .ih  B )  <->  ( if ( A  e. 
~H ,  A ,  0h )  .ih  B )  =  0 ) )  <-> 
( ( ( ( T `  if ( A  e.  ~H ,  A ,  0h )
)  =  ( C  .h  if ( A  e.  ~H ,  A ,  0h ) )  /\  ( T `  if ( B  e.  ~H ,  B ,  0h )
)  =  ( D  .h  if ( B  e.  ~H ,  B ,  0h ) ) )  /\  C  =/=  (
* `  D )
)  ->  ( ( if ( A  e.  ~H ,  A ,  0h )  .ih  ( T `  if ( B  e.  ~H ,  B ,  0h )
) )  =  ( ( T `  if ( A  e.  ~H ,  A ,  0h )
)  .ih  if ( B  e.  ~H ,  B ,  0h ) )  <->  ( if ( A  e.  ~H ,  A ,  0h )  .ih  if ( B  e. 
~H ,  B ,  0h ) )  =  0 ) ) ) )
25 oveq1 6657 . . . . . . 7  |-  ( C  =  if ( C  e.  CC ,  C ,  0 )  -> 
( C  .h  if ( A  e.  ~H ,  A ,  0h )
)  =  ( if ( C  e.  CC ,  C ,  0 )  .h  if ( A  e.  ~H ,  A ,  0h ) ) )
2625eqeq2d 2632 . . . . . 6  |-  ( C  =  if ( C  e.  CC ,  C ,  0 )  -> 
( ( T `  if ( A  e.  ~H ,  A ,  0h )
)  =  ( C  .h  if ( A  e.  ~H ,  A ,  0h ) )  <->  ( T `  if ( A  e. 
~H ,  A ,  0h ) )  =  ( if ( C  e.  CC ,  C , 
0 )  .h  if ( A  e.  ~H ,  A ,  0h )
) ) )
2726anbi1d 741 . . . . 5  |-  ( C  =  if ( C  e.  CC ,  C ,  0 )  -> 
( ( ( T `
 if ( A  e.  ~H ,  A ,  0h ) )  =  ( C  .h  if ( A  e.  ~H ,  A ,  0h )
)  /\  ( T `  if ( B  e. 
~H ,  B ,  0h ) )  =  ( D  .h  if ( B  e.  ~H ,  B ,  0h )
) )  <->  ( ( T `  if ( A  e.  ~H ,  A ,  0h ) )  =  ( if ( C  e.  CC ,  C ,  0 )  .h  if ( A  e. 
~H ,  A ,  0h ) )  /\  ( T `  if ( B  e.  ~H ,  B ,  0h ) )  =  ( D  .h  if ( B  e.  ~H ,  B ,  0h )
) ) ) )
28 neeq1 2856 . . . . 5  |-  ( C  =  if ( C  e.  CC ,  C ,  0 )  -> 
( C  =/=  (
* `  D )  <->  if ( C  e.  CC ,  C ,  0 )  =/=  ( * `  D ) ) )
2927, 28anbi12d 747 . . . 4  |-  ( C  =  if ( C  e.  CC ,  C ,  0 )  -> 
( ( ( ( T `  if ( A  e.  ~H ,  A ,  0h )
)  =  ( C  .h  if ( A  e.  ~H ,  A ,  0h ) )  /\  ( T `  if ( B  e.  ~H ,  B ,  0h )
)  =  ( D  .h  if ( B  e.  ~H ,  B ,  0h ) ) )  /\  C  =/=  (
* `  D )
)  <->  ( ( ( T `  if ( A  e.  ~H ,  A ,  0h )
)  =  ( if ( C  e.  CC ,  C ,  0 )  .h  if ( A  e.  ~H ,  A ,  0h ) )  /\  ( T `  if ( B  e.  ~H ,  B ,  0h )
)  =  ( D  .h  if ( B  e.  ~H ,  B ,  0h ) ) )  /\  if ( C  e.  CC ,  C ,  0 )  =/=  ( * `  D
) ) ) )
3029imbi1d 331 . . 3  |-  ( C  =  if ( C  e.  CC ,  C ,  0 )  -> 
( ( ( ( ( T `  if ( A  e.  ~H ,  A ,  0h )
)  =  ( C  .h  if ( A  e.  ~H ,  A ,  0h ) )  /\  ( T `  if ( B  e.  ~H ,  B ,  0h )
)  =  ( D  .h  if ( B  e.  ~H ,  B ,  0h ) ) )  /\  C  =/=  (
* `  D )
)  ->  ( ( if ( A  e.  ~H ,  A ,  0h )  .ih  ( T `  if ( B  e.  ~H ,  B ,  0h )
) )  =  ( ( T `  if ( A  e.  ~H ,  A ,  0h )
)  .ih  if ( B  e.  ~H ,  B ,  0h ) )  <->  ( if ( A  e.  ~H ,  A ,  0h )  .ih  if ( B  e. 
~H ,  B ,  0h ) )  =  0 ) )  <->  ( (
( ( T `  if ( A  e.  ~H ,  A ,  0h )
)  =  ( if ( C  e.  CC ,  C ,  0 )  .h  if ( A  e.  ~H ,  A ,  0h ) )  /\  ( T `  if ( B  e.  ~H ,  B ,  0h )
)  =  ( D  .h  if ( B  e.  ~H ,  B ,  0h ) ) )  /\  if ( C  e.  CC ,  C ,  0 )  =/=  ( * `  D
) )  ->  (
( if ( A  e.  ~H ,  A ,  0h )  .ih  ( T `  if ( B  e.  ~H ,  B ,  0h ) ) )  =  ( ( T `
 if ( A  e.  ~H ,  A ,  0h ) )  .ih  if ( B  e.  ~H ,  B ,  0h )
)  <->  ( if ( A  e.  ~H ,  A ,  0h )  .ih  if ( B  e. 
~H ,  B ,  0h ) )  =  0 ) ) ) )
31 oveq1 6657 . . . . . . 7  |-  ( D  =  if ( D  e.  CC ,  D ,  0 )  -> 
( D  .h  if ( B  e.  ~H ,  B ,  0h )
)  =  ( if ( D  e.  CC ,  D ,  0 )  .h  if ( B  e.  ~H ,  B ,  0h ) ) )
3231eqeq2d 2632 . . . . . 6  |-  ( D  =  if ( D  e.  CC ,  D ,  0 )  -> 
( ( T `  if ( B  e.  ~H ,  B ,  0h )
)  =  ( D  .h  if ( B  e.  ~H ,  B ,  0h ) )  <->  ( T `  if ( B  e. 
~H ,  B ,  0h ) )  =  ( if ( D  e.  CC ,  D , 
0 )  .h  if ( B  e.  ~H ,  B ,  0h )
) ) )
3332anbi2d 740 . . . . 5  |-  ( D  =  if ( D  e.  CC ,  D ,  0 )  -> 
( ( ( T `
 if ( A  e.  ~H ,  A ,  0h ) )  =  ( if ( C  e.  CC ,  C ,  0 )  .h  if ( A  e. 
~H ,  A ,  0h ) )  /\  ( T `  if ( B  e.  ~H ,  B ,  0h ) )  =  ( D  .h  if ( B  e.  ~H ,  B ,  0h )
) )  <->  ( ( T `  if ( A  e.  ~H ,  A ,  0h ) )  =  ( if ( C  e.  CC ,  C ,  0 )  .h  if ( A  e. 
~H ,  A ,  0h ) )  /\  ( T `  if ( B  e.  ~H ,  B ,  0h ) )  =  ( if ( D  e.  CC ,  D ,  0 )  .h  if ( B  e. 
~H ,  B ,  0h ) ) ) ) )
34 fveq2 6191 . . . . . 6  |-  ( D  =  if ( D  e.  CC ,  D ,  0 )  -> 
( * `  D
)  =  ( * `
 if ( D  e.  CC ,  D ,  0 ) ) )
3534neeq2d 2854 . . . . 5  |-  ( D  =  if ( D  e.  CC ,  D ,  0 )  -> 
( if ( C  e.  CC ,  C ,  0 )  =/=  ( * `  D
)  <->  if ( C  e.  CC ,  C , 
0 )  =/=  (
* `  if ( D  e.  CC ,  D ,  0 ) ) ) )
3633, 35anbi12d 747 . . . 4  |-  ( D  =  if ( D  e.  CC ,  D ,  0 )  -> 
( ( ( ( T `  if ( A  e.  ~H ,  A ,  0h )
)  =  ( if ( C  e.  CC ,  C ,  0 )  .h  if ( A  e.  ~H ,  A ,  0h ) )  /\  ( T `  if ( B  e.  ~H ,  B ,  0h )
)  =  ( D  .h  if ( B  e.  ~H ,  B ,  0h ) ) )  /\  if ( C  e.  CC ,  C ,  0 )  =/=  ( * `  D
) )  <->  ( (
( T `  if ( A  e.  ~H ,  A ,  0h )
)  =  ( if ( C  e.  CC ,  C ,  0 )  .h  if ( A  e.  ~H ,  A ,  0h ) )  /\  ( T `  if ( B  e.  ~H ,  B ,  0h )
)  =  ( if ( D  e.  CC ,  D ,  0 )  .h  if ( B  e.  ~H ,  B ,  0h ) ) )  /\  if ( C  e.  CC ,  C ,  0 )  =/=  ( * `  if ( D  e.  CC ,  D ,  0 ) ) ) ) )
3736imbi1d 331 . . 3  |-  ( D  =  if ( D  e.  CC ,  D ,  0 )  -> 
( ( ( ( ( T `  if ( A  e.  ~H ,  A ,  0h )
)  =  ( if ( C  e.  CC ,  C ,  0 )  .h  if ( A  e.  ~H ,  A ,  0h ) )  /\  ( T `  if ( B  e.  ~H ,  B ,  0h )
)  =  ( D  .h  if ( B  e.  ~H ,  B ,  0h ) ) )  /\  if ( C  e.  CC ,  C ,  0 )  =/=  ( * `  D
) )  ->  (
( if ( A  e.  ~H ,  A ,  0h )  .ih  ( T `  if ( B  e.  ~H ,  B ,  0h ) ) )  =  ( ( T `
 if ( A  e.  ~H ,  A ,  0h ) )  .ih  if ( B  e.  ~H ,  B ,  0h )
)  <->  ( if ( A  e.  ~H ,  A ,  0h )  .ih  if ( B  e. 
~H ,  B ,  0h ) )  =  0 ) )  <->  ( (
( ( T `  if ( A  e.  ~H ,  A ,  0h )
)  =  ( if ( C  e.  CC ,  C ,  0 )  .h  if ( A  e.  ~H ,  A ,  0h ) )  /\  ( T `  if ( B  e.  ~H ,  B ,  0h )
)  =  ( if ( D  e.  CC ,  D ,  0 )  .h  if ( B  e.  ~H ,  B ,  0h ) ) )  /\  if ( C  e.  CC ,  C ,  0 )  =/=  ( * `  if ( D  e.  CC ,  D ,  0 ) ) )  ->  (
( if ( A  e.  ~H ,  A ,  0h )  .ih  ( T `  if ( B  e.  ~H ,  B ,  0h ) ) )  =  ( ( T `
 if ( A  e.  ~H ,  A ,  0h ) )  .ih  if ( B  e.  ~H ,  B ,  0h )
)  <->  ( if ( A  e.  ~H ,  A ,  0h )  .ih  if ( B  e. 
~H ,  B ,  0h ) )  =  0 ) ) ) )
38 ifhvhv0 27879 . . . 4  |-  if ( A  e.  ~H ,  A ,  0h )  e.  ~H
39 ifhvhv0 27879 . . . 4  |-  if ( B  e.  ~H ,  B ,  0h )  e.  ~H
40 0cn 10032 . . . . 5  |-  0  e.  CC
4140elimel 4150 . . . 4  |-  if ( C  e.  CC ,  C ,  0 )  e.  CC
4240elimel 4150 . . . 4  |-  if ( D  e.  CC ,  D ,  0 )  e.  CC
4338, 39, 41, 42eigorthi 28696 . . 3  |-  ( ( ( ( T `  if ( A  e.  ~H ,  A ,  0h )
)  =  ( if ( C  e.  CC ,  C ,  0 )  .h  if ( A  e.  ~H ,  A ,  0h ) )  /\  ( T `  if ( B  e.  ~H ,  B ,  0h )
)  =  ( if ( D  e.  CC ,  D ,  0 )  .h  if ( B  e.  ~H ,  B ,  0h ) ) )  /\  if ( C  e.  CC ,  C ,  0 )  =/=  ( * `  if ( D  e.  CC ,  D ,  0 ) ) )  ->  (
( if ( A  e.  ~H ,  A ,  0h )  .ih  ( T `  if ( B  e.  ~H ,  B ,  0h ) ) )  =  ( ( T `
 if ( A  e.  ~H ,  A ,  0h ) )  .ih  if ( B  e.  ~H ,  B ,  0h )
)  <->  ( if ( A  e.  ~H ,  A ,  0h )  .ih  if ( B  e. 
~H ,  B ,  0h ) )  =  0 ) )
4412, 24, 30, 37, 43dedth4h 4142 . 2  |-  ( ( ( A  e.  ~H  /\  B  e.  ~H )  /\  ( C  e.  CC  /\  D  e.  CC ) )  ->  ( (
( ( T `  A )  =  ( C  .h  A )  /\  ( T `  B )  =  ( D  .h  B ) )  /\  C  =/=  ( * `  D
) )  ->  (
( A  .ih  ( T `  B )
)  =  ( ( T `  A ) 
.ih  B )  <->  ( A  .ih  B )  =  0 ) ) )
4544imp 445 1  |-  ( ( ( ( A  e. 
~H  /\  B  e.  ~H )  /\  ( C  e.  CC  /\  D  e.  CC ) )  /\  ( ( ( T `
 A )  =  ( C  .h  A
)  /\  ( T `  B )  =  ( D  .h  B ) )  /\  C  =/=  ( * `  D
) ) )  -> 
( ( A  .ih  ( T `  B ) )  =  ( ( T `  A ) 
.ih  B )  <->  ( A  .ih  B )  =  0 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   ifcif 4086   ` cfv 5888  (class class class)co 6650   CCcc 9934   0cc0 9936   *ccj 13836   ~Hchil 27776    .h csm 27778    .ih csp 27779   0hc0v 27781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-hv0cl 27860  ax-hfvmul 27862  ax-hfi 27936  ax-his1 27939  ax-his3 27941
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-2 11079  df-cj 13839  df-re 13840  df-im 13841
This theorem is referenced by:  eighmorth  28823
  Copyright terms: Public domain W3C validator