Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnrefiisp Structured version   Visualization version   Unicode version

Theorem cnrefiisp 40056
Description: A non-real, complex number is an isolated point w.r.t. the union of the reals with any finite set (the extended reals is an example of such a union). (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
cnrefiisp.a  |-  ( ph  ->  A  e.  CC )
cnrefiisp.n  |-  ( ph  ->  -.  A  e.  RR )
cnrefiisp.b  |-  ( ph  ->  B  e.  Fin )
cnrefiisp.c  |-  C  =  ( RR  u.  B
)
Assertion
Ref Expression
cnrefiisp  |-  ( ph  ->  E. x  e.  RR+  A. y  e.  C  ( ( y  e.  CC  /\  y  =/=  A )  ->  x  <_  ( abs `  ( y  -  A ) ) ) )
Distinct variable groups:    x, A, y    x, B    x, C, y
Allowed substitution hints:    ph( x, y)    B( y)

Proof of Theorem cnrefiisp
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnrefiisp.a . . 3  |-  ( ph  ->  A  e.  CC )
2 cnrefiisp.n . . 3  |-  ( ph  ->  -.  A  e.  RR )
3 cnrefiisp.b . . 3  |-  ( ph  ->  B  e.  Fin )
4 cnrefiisp.c . . 3  |-  C  =  ( RR  u.  B
)
5 eqid 2622 . . 3  |-  ( { ( abs `  (
Im `  A )
) }  u.  U_ w  e.  ( ( B  i^i  CC )  \  { A } ) { ( abs `  (
w  -  A ) ) } )  =  ( { ( abs `  ( Im `  A
) ) }  u.  U_ w  e.  ( ( B  i^i  CC ) 
\  { A }
) { ( abs `  ( w  -  A
) ) } )
6 oveq1 6657 . . . . . . . 8  |-  ( z  =  w  ->  (
z  -  A )  =  ( w  -  A ) )
76fveq2d 6195 . . . . . . 7  |-  ( z  =  w  ->  ( abs `  ( z  -  A ) )  =  ( abs `  (
w  -  A ) ) )
87sneqd 4189 . . . . . 6  |-  ( z  =  w  ->  { ( abs `  ( z  -  A ) ) }  =  { ( abs `  ( w  -  A ) ) } )
98cbviunv 4559 . . . . 5  |-  U_ z  e.  ( ( B  i^i  CC )  \  { A } ) { ( abs `  ( z  -  A ) ) }  =  U_ w  e.  ( ( B  i^i  CC )  \  { A } ) { ( abs `  ( w  -  A ) ) }
109uneq2i 3764 . . . 4  |-  ( { ( abs `  (
Im `  A )
) }  u.  U_ z  e.  ( ( B  i^i  CC )  \  { A } ) { ( abs `  (
z  -  A ) ) } )  =  ( { ( abs `  ( Im `  A
) ) }  u.  U_ w  e.  ( ( B  i^i  CC ) 
\  { A }
) { ( abs `  ( w  -  A
) ) } )
1110infeq1i 8384 . . 3  |- inf ( ( { ( abs `  (
Im `  A )
) }  u.  U_ z  e.  ( ( B  i^i  CC )  \  { A } ) { ( abs `  (
z  -  A ) ) } ) , 
RR* ,  <  )  = inf ( ( { ( abs `  ( Im
`  A ) ) }  u.  U_ w  e.  ( ( B  i^i  CC )  \  { A } ) { ( abs `  ( w  -  A ) ) } ) ,  RR* ,  <  )
121, 2, 3, 4, 5, 11cnrefiisplem 40055 . 2  |-  ( ph  ->  E. x  e.  RR+  A. w  e.  C  ( ( w  e.  CC  /\  w  =/=  A )  ->  x  <_  ( abs `  ( w  -  A ) ) ) )
13 eleq1w 2684 . . . . . 6  |-  ( w  =  y  ->  (
w  e.  CC  <->  y  e.  CC ) )
14 neeq1 2856 . . . . . 6  |-  ( w  =  y  ->  (
w  =/=  A  <->  y  =/=  A ) )
1513, 14anbi12d 747 . . . . 5  |-  ( w  =  y  ->  (
( w  e.  CC  /\  w  =/=  A )  <-> 
( y  e.  CC  /\  y  =/=  A ) ) )
16 oveq1 6657 . . . . . . 7  |-  ( w  =  y  ->  (
w  -  A )  =  ( y  -  A ) )
1716fveq2d 6195 . . . . . 6  |-  ( w  =  y  ->  ( abs `  ( w  -  A ) )  =  ( abs `  (
y  -  A ) ) )
1817breq2d 4665 . . . . 5  |-  ( w  =  y  ->  (
x  <_  ( abs `  ( w  -  A
) )  <->  x  <_  ( abs `  ( y  -  A ) ) ) )
1915, 18imbi12d 334 . . . 4  |-  ( w  =  y  ->  (
( ( w  e.  CC  /\  w  =/= 
A )  ->  x  <_  ( abs `  (
w  -  A ) ) )  <->  ( (
y  e.  CC  /\  y  =/=  A )  ->  x  <_  ( abs `  (
y  -  A ) ) ) ) )
2019cbvralv 3171 . . 3  |-  ( A. w  e.  C  (
( w  e.  CC  /\  w  =/=  A )  ->  x  <_  ( abs `  ( w  -  A ) ) )  <->  A. y  e.  C  ( ( y  e.  CC  /\  y  =/= 
A )  ->  x  <_  ( abs `  (
y  -  A ) ) ) )
2120rexbii 3041 . 2  |-  ( E. x  e.  RR+  A. w  e.  C  ( (
w  e.  CC  /\  w  =/=  A )  ->  x  <_  ( abs `  (
w  -  A ) ) )  <->  E. x  e.  RR+  A. y  e.  C  ( ( y  e.  CC  /\  y  =/=  A )  ->  x  <_  ( abs `  (
y  -  A ) ) ) )
2212, 21sylib 208 1  |-  ( ph  ->  E. x  e.  RR+  A. y  e.  C  ( ( y  e.  CC  /\  y  =/=  A )  ->  x  <_  ( abs `  ( y  -  A ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913    \ cdif 3571    u. cun 3572    i^i cin 3573   {csn 4177   U_ciun 4520   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Fincfn 7955  infcinf 8347   CCcc 9934   RRcr 9935   RR*cxr 10073    < clt 10074    <_ cle 10075    - cmin 10266   RR+crp 11832   Imcim 13838   abscabs 13974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976
This theorem is referenced by:  climxlim2lem  40071
  Copyright terms: Public domain W3C validator