MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fidomdm Structured version   Visualization version   Unicode version

Theorem fidomdm 8243
Description: Any finite set dominates its domain. (Contributed by Mario Carneiro, 22-Sep-2013.) (Revised by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
fidomdm  |-  ( F  e.  Fin  ->  dom  F  ~<_  F )

Proof of Theorem fidomdm
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 dmresv 5593 . 2  |-  dom  ( F  |`  _V )  =  dom  F
2 finresfin 8186 . . . 4  |-  ( F  e.  Fin  ->  ( F  |`  _V )  e. 
Fin )
3 fvex 6201 . . . . . . 7  |-  ( 1st `  x )  e.  _V
4 eqid 2622 . . . . . . 7  |-  ( x  e.  ( F  |`  _V )  |->  ( 1st `  x ) )  =  ( x  e.  ( F  |`  _V )  |->  ( 1st `  x
) )
53, 4fnmpti 6022 . . . . . 6  |-  ( x  e.  ( F  |`  _V )  |->  ( 1st `  x ) )  Fn  ( F  |`  _V )
6 dffn4 6121 . . . . . 6  |-  ( ( x  e.  ( F  |`  _V )  |->  ( 1st `  x ) )  Fn  ( F  |`  _V )  <->  ( x  e.  ( F  |`  _V )  |->  ( 1st `  x ) ) : ( F  |`  _V ) -onto-> ran  ( x  e.  ( F  |`  _V )  |->  ( 1st `  x
) ) )
75, 6mpbi 220 . . . . 5  |-  ( x  e.  ( F  |`  _V )  |->  ( 1st `  x ) ) : ( F  |`  _V ) -onto-> ran  ( x  e.  ( F  |`  _V )  |->  ( 1st `  x
) )
8 relres 5426 . . . . . 6  |-  Rel  ( F  |`  _V )
9 reldm 7219 . . . . . 6  |-  ( Rel  ( F  |`  _V )  ->  dom  ( F  |`  _V )  =  ran  ( x  e.  ( F  |`  _V )  |->  ( 1st `  x ) ) )
10 foeq3 6113 . . . . . 6  |-  ( dom  ( F  |`  _V )  =  ran  ( x  e.  ( F  |`  _V )  |->  ( 1st `  x
) )  ->  (
( x  e.  ( F  |`  _V )  |->  ( 1st `  x
) ) : ( F  |`  _V ) -onto-> dom  ( F  |`  _V )  <->  ( x  e.  ( F  |`  _V )  |->  ( 1st `  x ) ) : ( F  |`  _V ) -onto-> ran  ( x  e.  ( F  |`  _V )  |->  ( 1st `  x
) ) ) )
118, 9, 10mp2b 10 . . . . 5  |-  ( ( x  e.  ( F  |`  _V )  |->  ( 1st `  x ) ) : ( F  |`  _V ) -onto-> dom  ( F  |`  _V )  <->  ( x  e.  ( F  |`  _V )  |->  ( 1st `  x ) ) : ( F  |`  _V ) -onto-> ran  ( x  e.  ( F  |`  _V )  |->  ( 1st `  x
) ) )
127, 11mpbir 221 . . . 4  |-  ( x  e.  ( F  |`  _V )  |->  ( 1st `  x ) ) : ( F  |`  _V ) -onto-> dom  ( F  |`  _V )
13 fodomfi 8239 . . . 4  |-  ( ( ( F  |`  _V )  e.  Fin  /\  ( x  e.  ( F  |`  _V )  |->  ( 1st `  x ) ) : ( F  |`  _V ) -onto-> dom  ( F  |`  _V )
)  ->  dom  ( F  |`  _V )  ~<_  ( F  |`  _V ) )
142, 12, 13sylancl 694 . . 3  |-  ( F  e.  Fin  ->  dom  ( F  |`  _V )  ~<_  ( F  |`  _V )
)
15 resss 5422 . . . 4  |-  ( F  |`  _V )  C_  F
16 ssdomg 8001 . . . 4  |-  ( F  e.  Fin  ->  (
( F  |`  _V )  C_  F  ->  ( F  |` 
_V )  ~<_  F ) )
1715, 16mpi 20 . . 3  |-  ( F  e.  Fin  ->  ( F  |`  _V )  ~<_  F )
18 domtr 8009 . . 3  |-  ( ( dom  ( F  |`  _V )  ~<_  ( F  |` 
_V )  /\  ( F  |`  _V )  ~<_  F )  ->  dom  ( F  |`  _V )  ~<_  F )
1914, 17, 18syl2anc 693 . 2  |-  ( F  e.  Fin  ->  dom  ( F  |`  _V )  ~<_  F )
201, 19syl5eqbrr 4689 1  |-  ( F  e.  Fin  ->  dom  F  ~<_  F )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    = wceq 1483    e. wcel 1990   _Vcvv 3200    C_ wss 3574   class class class wbr 4653    |-> cmpt 4729   dom cdm 5114   ran crn 5115    |` cres 5116   Rel wrel 5119    Fn wfn 5883   -onto->wfo 5886   ` cfv 5888   1stc1st 7166    ~<_ cdom 7953   Fincfn 7955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-1st 7168  df-2nd 7169  df-1o 7560  df-er 7742  df-en 7956  df-dom 7957  df-fin 7959
This theorem is referenced by:  dmfi  8244  hashfun  13224
  Copyright terms: Public domain W3C validator