MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  findcard Structured version   Visualization version   Unicode version

Theorem findcard 8199
Description: Schema for induction on the cardinality of a finite set. The inductive hypothesis is that the result is true on the given set with any one element removed. The result is then proven to be true for all finite sets. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypotheses
Ref Expression
findcard.1  |-  ( x  =  (/)  ->  ( ph  <->  ps ) )
findcard.2  |-  ( x  =  ( y  \  { z } )  ->  ( ph  <->  ch )
)
findcard.3  |-  ( x  =  y  ->  ( ph 
<->  th ) )
findcard.4  |-  ( x  =  A  ->  ( ph 
<->  ta ) )
findcard.5  |-  ps
findcard.6  |-  ( y  e.  Fin  ->  ( A. z  e.  y  ch  ->  th ) )
Assertion
Ref Expression
findcard  |-  ( A  e.  Fin  ->  ta )
Distinct variable groups:    x, y,
z, A    ps, x    ch, x    th, x    ta, x    ph, y, z
Allowed substitution hints:    ph( x)    ps( y, z)    ch( y, z)    th( y, z)    ta( y,
z)

Proof of Theorem findcard
Dummy variables  w  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 findcard.4 . 2  |-  ( x  =  A  ->  ( ph 
<->  ta ) )
2 isfi 7979 . . 3  |-  ( x  e.  Fin  <->  E. w  e.  om  x  ~~  w
)
3 breq2 4657 . . . . . . . 8  |-  ( w  =  (/)  ->  ( x 
~~  w  <->  x  ~~  (/) ) )
43imbi1d 331 . . . . . . 7  |-  ( w  =  (/)  ->  ( ( x  ~~  w  ->  ph )  <->  ( x  ~~  (/) 
->  ph ) ) )
54albidv 1849 . . . . . 6  |-  ( w  =  (/)  ->  ( A. x ( x  ~~  w  ->  ph )  <->  A. x
( x  ~~  (/)  ->  ph )
) )
6 breq2 4657 . . . . . . . 8  |-  ( w  =  v  ->  (
x  ~~  w  <->  x  ~~  v ) )
76imbi1d 331 . . . . . . 7  |-  ( w  =  v  ->  (
( x  ~~  w  ->  ph )  <->  ( x  ~~  v  ->  ph )
) )
87albidv 1849 . . . . . 6  |-  ( w  =  v  ->  ( A. x ( x  ~~  w  ->  ph )  <->  A. x
( x  ~~  v  ->  ph ) ) )
9 breq2 4657 . . . . . . . 8  |-  ( w  =  suc  v  -> 
( x  ~~  w  <->  x 
~~  suc  v )
)
109imbi1d 331 . . . . . . 7  |-  ( w  =  suc  v  -> 
( ( x  ~~  w  ->  ph )  <->  ( x  ~~  suc  v  ->  ph )
) )
1110albidv 1849 . . . . . 6  |-  ( w  =  suc  v  -> 
( A. x ( x  ~~  w  ->  ph )  <->  A. x ( x 
~~  suc  v  ->  ph ) ) )
12 en0 8019 . . . . . . . 8  |-  ( x 
~~  (/)  <->  x  =  (/) )
13 findcard.5 . . . . . . . . 9  |-  ps
14 findcard.1 . . . . . . . . 9  |-  ( x  =  (/)  ->  ( ph  <->  ps ) )
1513, 14mpbiri 248 . . . . . . . 8  |-  ( x  =  (/)  ->  ph )
1612, 15sylbi 207 . . . . . . 7  |-  ( x 
~~  (/)  ->  ph )
1716ax-gen 1722 . . . . . 6  |-  A. x
( x  ~~  (/)  ->  ph )
18 peano2 7086 . . . . . . . . . . . . 13  |-  ( v  e.  om  ->  suc  v  e.  om )
19 breq2 4657 . . . . . . . . . . . . . 14  |-  ( w  =  suc  v  -> 
( y  ~~  w  <->  y 
~~  suc  v )
)
2019rspcev 3309 . . . . . . . . . . . . 13  |-  ( ( suc  v  e.  om  /\  y  ~~  suc  v
)  ->  E. w  e.  om  y  ~~  w
)
2118, 20sylan 488 . . . . . . . . . . . 12  |-  ( ( v  e.  om  /\  y  ~~  suc  v )  ->  E. w  e.  om  y  ~~  w )
22 isfi 7979 . . . . . . . . . . . 12  |-  ( y  e.  Fin  <->  E. w  e.  om  y  ~~  w
)
2321, 22sylibr 224 . . . . . . . . . . 11  |-  ( ( v  e.  om  /\  y  ~~  suc  v )  ->  y  e.  Fin )
24233adant2 1080 . . . . . . . . . 10  |-  ( ( v  e.  om  /\  A. x ( x  ~~  v  ->  ph )  /\  y  ~~  suc  v )  -> 
y  e.  Fin )
25 dif1en 8193 . . . . . . . . . . . . . . . 16  |-  ( ( v  e.  om  /\  y  ~~  suc  v  /\  z  e.  y )  ->  ( y  \  {
z } )  ~~  v )
26253expa 1265 . . . . . . . . . . . . . . 15  |-  ( ( ( v  e.  om  /\  y  ~~  suc  v
)  /\  z  e.  y )  ->  (
y  \  { z } )  ~~  v
)
27 vex 3203 . . . . . . . . . . . . . . . . 17  |-  y  e. 
_V
28 difexg 4808 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  _V  ->  (
y  \  { z } )  e.  _V )
2927, 28ax-mp 5 . . . . . . . . . . . . . . . 16  |-  ( y 
\  { z } )  e.  _V
30 breq1 4656 . . . . . . . . . . . . . . . . 17  |-  ( x  =  ( y  \  { z } )  ->  ( x  ~~  v 
<->  ( y  \  {
z } )  ~~  v ) )
31 findcard.2 . . . . . . . . . . . . . . . . 17  |-  ( x  =  ( y  \  { z } )  ->  ( ph  <->  ch )
)
3230, 31imbi12d 334 . . . . . . . . . . . . . . . 16  |-  ( x  =  ( y  \  { z } )  ->  ( ( x 
~~  v  ->  ph )  <->  ( ( y  \  {
z } )  ~~  v  ->  ch ) ) )
3329, 32spcv 3299 . . . . . . . . . . . . . . 15  |-  ( A. x ( x  ~~  v  ->  ph )  ->  (
( y  \  {
z } )  ~~  v  ->  ch ) )
3426, 33syl5com 31 . . . . . . . . . . . . . 14  |-  ( ( ( v  e.  om  /\  y  ~~  suc  v
)  /\  z  e.  y )  ->  ( A. x ( x  ~~  v  ->  ph )  ->  ch ) )
3534ralrimdva 2969 . . . . . . . . . . . . 13  |-  ( ( v  e.  om  /\  y  ~~  suc  v )  ->  ( A. x
( x  ~~  v  ->  ph )  ->  A. z  e.  y  ch )
)
3635imp 445 . . . . . . . . . . . 12  |-  ( ( ( v  e.  om  /\  y  ~~  suc  v
)  /\  A. x
( x  ~~  v  ->  ph ) )  ->  A. z  e.  y  ch )
3736an32s 846 . . . . . . . . . . 11  |-  ( ( ( v  e.  om  /\ 
A. x ( x 
~~  v  ->  ph )
)  /\  y  ~~  suc  v )  ->  A. z  e.  y  ch )
38373impa 1259 . . . . . . . . . 10  |-  ( ( v  e.  om  /\  A. x ( x  ~~  v  ->  ph )  /\  y  ~~  suc  v )  ->  A. z  e.  y  ch )
39 findcard.6 . . . . . . . . . 10  |-  ( y  e.  Fin  ->  ( A. z  e.  y  ch  ->  th ) )
4024, 38, 39sylc 65 . . . . . . . . 9  |-  ( ( v  e.  om  /\  A. x ( x  ~~  v  ->  ph )  /\  y  ~~  suc  v )  ->  th )
41403exp 1264 . . . . . . . 8  |-  ( v  e.  om  ->  ( A. x ( x  ~~  v  ->  ph )  ->  (
y  ~~  suc  v  ->  th ) ) )
4241alrimdv 1857 . . . . . . 7  |-  ( v  e.  om  ->  ( A. x ( x  ~~  v  ->  ph )  ->  A. y
( y  ~~  suc  v  ->  th ) ) )
43 breq1 4656 . . . . . . . . 9  |-  ( x  =  y  ->  (
x  ~~  suc  v  <->  y  ~~  suc  v ) )
44 findcard.3 . . . . . . . . 9  |-  ( x  =  y  ->  ( ph 
<->  th ) )
4543, 44imbi12d 334 . . . . . . . 8  |-  ( x  =  y  ->  (
( x  ~~  suc  v  ->  ph )  <->  ( y  ~~  suc  v  ->  th )
) )
4645cbvalv 2273 . . . . . . 7  |-  ( A. x ( x  ~~  suc  v  ->  ph )  <->  A. y ( y  ~~  suc  v  ->  th )
)
4742, 46syl6ibr 242 . . . . . 6  |-  ( v  e.  om  ->  ( A. x ( x  ~~  v  ->  ph )  ->  A. x
( x  ~~  suc  v  ->  ph ) ) )
485, 8, 11, 17, 47finds1 7095 . . . . 5  |-  ( w  e.  om  ->  A. x
( x  ~~  w  ->  ph ) )
494819.21bi 2059 . . . 4  |-  ( w  e.  om  ->  (
x  ~~  w  ->  ph ) )
5049rexlimiv 3027 . . 3  |-  ( E. w  e.  om  x  ~~  w  ->  ph )
512, 50sylbi 207 . 2  |-  ( x  e.  Fin  ->  ph )
521, 51vtoclga 3272 1  |-  ( A  e.  Fin  ->  ta )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037   A.wal 1481    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   _Vcvv 3200    \ cdif 3571   (/)c0 3915   {csn 4177   class class class wbr 4653   suc csuc 5725   omcom 7065    ~~ cen 7952   Fincfn 7955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-1o 7560  df-er 7742  df-en 7956  df-fin 7959
This theorem is referenced by:  xpfi  8231
  Copyright terms: Public domain W3C validator