MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwssplit1 Structured version   Visualization version   Unicode version

Theorem pwssplit1 19059
Description: Splitting for structure powers, part 1: restriction is an onto function. The only actual monoid law we need here is that the base set is nonempty. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Hypotheses
Ref Expression
pwssplit1.y  |-  Y  =  ( W  ^s  U )
pwssplit1.z  |-  Z  =  ( W  ^s  V )
pwssplit1.b  |-  B  =  ( Base `  Y
)
pwssplit1.c  |-  C  =  ( Base `  Z
)
pwssplit1.f  |-  F  =  ( x  e.  B  |->  ( x  |`  V ) )
Assertion
Ref Expression
pwssplit1  |-  ( ( W  e.  Mnd  /\  U  e.  X  /\  V  C_  U )  ->  F : B -onto-> C )
Distinct variable groups:    x, Y    x, W    x, U    x, Z    x, V    x, B    x, C    x, X
Allowed substitution hint:    F( x)

Proof of Theorem pwssplit1
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwssplit1.y . . 3  |-  Y  =  ( W  ^s  U )
2 pwssplit1.z . . 3  |-  Z  =  ( W  ^s  V )
3 pwssplit1.b . . 3  |-  B  =  ( Base `  Y
)
4 pwssplit1.c . . 3  |-  C  =  ( Base `  Z
)
5 pwssplit1.f . . 3  |-  F  =  ( x  e.  B  |->  ( x  |`  V ) )
61, 2, 3, 4, 5pwssplit0 19058 . 2  |-  ( ( W  e.  Mnd  /\  U  e.  X  /\  V  C_  U )  ->  F : B --> C )
7 simp1 1061 . . . . . . . . 9  |-  ( ( W  e.  Mnd  /\  U  e.  X  /\  V  C_  U )  ->  W  e.  Mnd )
8 simp2 1062 . . . . . . . . . 10  |-  ( ( W  e.  Mnd  /\  U  e.  X  /\  V  C_  U )  ->  U  e.  X )
9 simp3 1063 . . . . . . . . . 10  |-  ( ( W  e.  Mnd  /\  U  e.  X  /\  V  C_  U )  ->  V  C_  U )
108, 9ssexd 4805 . . . . . . . . 9  |-  ( ( W  e.  Mnd  /\  U  e.  X  /\  V  C_  U )  ->  V  e.  _V )
11 eqid 2622 . . . . . . . . . 10  |-  ( Base `  W )  =  (
Base `  W )
122, 11, 4pwselbasb 16148 . . . . . . . . 9  |-  ( ( W  e.  Mnd  /\  V  e.  _V )  ->  ( a  e.  C  <->  a : V --> ( Base `  W ) ) )
137, 10, 12syl2anc 693 . . . . . . . 8  |-  ( ( W  e.  Mnd  /\  U  e.  X  /\  V  C_  U )  -> 
( a  e.  C  <->  a : V --> ( Base `  W ) ) )
1413biimpa 501 . . . . . . 7  |-  ( ( ( W  e.  Mnd  /\  U  e.  X  /\  V  C_  U )  /\  a  e.  C )  ->  a : V --> ( Base `  W ) )
15 fvex 6201 . . . . . . . . . 10  |-  ( 0g
`  W )  e. 
_V
1615fconst 6091 . . . . . . . . 9  |-  ( ( U  \  V )  X.  { ( 0g
`  W ) } ) : ( U 
\  V ) --> { ( 0g `  W
) }
1716a1i 11 . . . . . . . 8  |-  ( ( ( W  e.  Mnd  /\  U  e.  X  /\  V  C_  U )  /\  a  e.  C )  ->  ( ( U  \  V )  X.  {
( 0g `  W
) } ) : ( U  \  V
) --> { ( 0g
`  W ) } )
18 simpl1 1064 . . . . . . . . . 10  |-  ( ( ( W  e.  Mnd  /\  U  e.  X  /\  V  C_  U )  /\  a  e.  C )  ->  W  e.  Mnd )
19 eqid 2622 . . . . . . . . . . 11  |-  ( 0g
`  W )  =  ( 0g `  W
)
2011, 19mndidcl 17308 . . . . . . . . . 10  |-  ( W  e.  Mnd  ->  ( 0g `  W )  e.  ( Base `  W
) )
2118, 20syl 17 . . . . . . . . 9  |-  ( ( ( W  e.  Mnd  /\  U  e.  X  /\  V  C_  U )  /\  a  e.  C )  ->  ( 0g `  W
)  e.  ( Base `  W ) )
2221snssd 4340 . . . . . . . 8  |-  ( ( ( W  e.  Mnd  /\  U  e.  X  /\  V  C_  U )  /\  a  e.  C )  ->  { ( 0g `  W ) }  C_  ( Base `  W )
)
2317, 22fssd 6057 . . . . . . 7  |-  ( ( ( W  e.  Mnd  /\  U  e.  X  /\  V  C_  U )  /\  a  e.  C )  ->  ( ( U  \  V )  X.  {
( 0g `  W
) } ) : ( U  \  V
) --> ( Base `  W
) )
24 disjdif 4040 . . . . . . . 8  |-  ( V  i^i  ( U  \  V ) )  =  (/)
2524a1i 11 . . . . . . 7  |-  ( ( ( W  e.  Mnd  /\  U  e.  X  /\  V  C_  U )  /\  a  e.  C )  ->  ( V  i^i  ( U  \  V ) )  =  (/) )
26 fun 6066 . . . . . . 7  |-  ( ( ( a : V --> ( Base `  W )  /\  ( ( U  \  V )  X.  {
( 0g `  W
) } ) : ( U  \  V
) --> ( Base `  W
) )  /\  ( V  i^i  ( U  \  V ) )  =  (/) )  ->  ( a  u.  ( ( U 
\  V )  X. 
{ ( 0g `  W ) } ) ) : ( V  u.  ( U  \  V ) ) --> ( ( Base `  W
)  u.  ( Base `  W ) ) )
2714, 23, 25, 26syl21anc 1325 . . . . . 6  |-  ( ( ( W  e.  Mnd  /\  U  e.  X  /\  V  C_  U )  /\  a  e.  C )  ->  ( a  u.  (
( U  \  V
)  X.  { ( 0g `  W ) } ) ) : ( V  u.  ( U  \  V ) ) --> ( ( Base `  W
)  u.  ( Base `  W ) ) )
28 simpl3 1066 . . . . . . . 8  |-  ( ( ( W  e.  Mnd  /\  U  e.  X  /\  V  C_  U )  /\  a  e.  C )  ->  V  C_  U )
29 undif 4049 . . . . . . . 8  |-  ( V 
C_  U  <->  ( V  u.  ( U  \  V
) )  =  U )
3028, 29sylib 208 . . . . . . 7  |-  ( ( ( W  e.  Mnd  /\  U  e.  X  /\  V  C_  U )  /\  a  e.  C )  ->  ( V  u.  ( U  \  V ) )  =  U )
31 unidm 3756 . . . . . . . 8  |-  ( (
Base `  W )  u.  ( Base `  W
) )  =  (
Base `  W )
3231a1i 11 . . . . . . 7  |-  ( ( ( W  e.  Mnd  /\  U  e.  X  /\  V  C_  U )  /\  a  e.  C )  ->  ( ( Base `  W
)  u.  ( Base `  W ) )  =  ( Base `  W
) )
3330, 32feq23d 6040 . . . . . 6  |-  ( ( ( W  e.  Mnd  /\  U  e.  X  /\  V  C_  U )  /\  a  e.  C )  ->  ( ( a  u.  ( ( U  \  V )  X.  {
( 0g `  W
) } ) ) : ( V  u.  ( U  \  V ) ) --> ( ( Base `  W )  u.  ( Base `  W ) )  <-> 
( a  u.  (
( U  \  V
)  X.  { ( 0g `  W ) } ) ) : U --> ( Base `  W
) ) )
3427, 33mpbid 222 . . . . 5  |-  ( ( ( W  e.  Mnd  /\  U  e.  X  /\  V  C_  U )  /\  a  e.  C )  ->  ( a  u.  (
( U  \  V
)  X.  { ( 0g `  W ) } ) ) : U --> ( Base `  W
) )
35 simpl2 1065 . . . . . 6  |-  ( ( ( W  e.  Mnd  /\  U  e.  X  /\  V  C_  U )  /\  a  e.  C )  ->  U  e.  X )
361, 11, 3pwselbasb 16148 . . . . . 6  |-  ( ( W  e.  Mnd  /\  U  e.  X )  ->  ( ( a  u.  ( ( U  \  V )  X.  {
( 0g `  W
) } ) )  e.  B  <->  ( a  u.  ( ( U  \  V )  X.  {
( 0g `  W
) } ) ) : U --> ( Base `  W ) ) )
3718, 35, 36syl2anc 693 . . . . 5  |-  ( ( ( W  e.  Mnd  /\  U  e.  X  /\  V  C_  U )  /\  a  e.  C )  ->  ( ( a  u.  ( ( U  \  V )  X.  {
( 0g `  W
) } ) )  e.  B  <->  ( a  u.  ( ( U  \  V )  X.  {
( 0g `  W
) } ) ) : U --> ( Base `  W ) ) )
3834, 37mpbird 247 . . . 4  |-  ( ( ( W  e.  Mnd  /\  U  e.  X  /\  V  C_  U )  /\  a  e.  C )  ->  ( a  u.  (
( U  \  V
)  X.  { ( 0g `  W ) } ) )  e.  B )
395fvtresfn 6284 . . . . . 6  |-  ( ( a  u.  ( ( U  \  V )  X.  { ( 0g
`  W ) } ) )  e.  B  ->  ( F `  (
a  u.  ( ( U  \  V )  X.  { ( 0g
`  W ) } ) ) )  =  ( ( a  u.  ( ( U  \  V )  X.  {
( 0g `  W
) } ) )  |`  V ) )
4038, 39syl 17 . . . . 5  |-  ( ( ( W  e.  Mnd  /\  U  e.  X  /\  V  C_  U )  /\  a  e.  C )  ->  ( F `  (
a  u.  ( ( U  \  V )  X.  { ( 0g
`  W ) } ) ) )  =  ( ( a  u.  ( ( U  \  V )  X.  {
( 0g `  W
) } ) )  |`  V ) )
41 resundir 5411 . . . . . . 7  |-  ( ( a  u.  ( ( U  \  V )  X.  { ( 0g
`  W ) } ) )  |`  V )  =  ( ( a  |`  V )  u.  (
( ( U  \  V )  X.  {
( 0g `  W
) } )  |`  V ) )
42 ffn 6045 . . . . . . . . 9  |-  ( a : V --> ( Base `  W )  ->  a  Fn  V )
43 fnresdm 6000 . . . . . . . . 9  |-  ( a  Fn  V  ->  (
a  |`  V )  =  a )
4414, 42, 433syl 18 . . . . . . . 8  |-  ( ( ( W  e.  Mnd  /\  U  e.  X  /\  V  C_  U )  /\  a  e.  C )  ->  ( a  |`  V )  =  a )
45 incom 3805 . . . . . . . . . 10  |-  ( ( U  \  V )  i^i  V )  =  ( V  i^i  ( U  \  V ) )
4645, 24eqtri 2644 . . . . . . . . 9  |-  ( ( U  \  V )  i^i  V )  =  (/)
47 fnconstg 6093 . . . . . . . . . . 11  |-  ( ( 0g `  W )  e.  _V  ->  (
( U  \  V
)  X.  { ( 0g `  W ) } )  Fn  ( U  \  V ) )
4815, 47ax-mp 5 . . . . . . . . . 10  |-  ( ( U  \  V )  X.  { ( 0g
`  W ) } )  Fn  ( U 
\  V )
49 fnresdisj 6001 . . . . . . . . . 10  |-  ( ( ( U  \  V
)  X.  { ( 0g `  W ) } )  Fn  ( U  \  V )  -> 
( ( ( U 
\  V )  i^i 
V )  =  (/)  <->  (
( ( U  \  V )  X.  {
( 0g `  W
) } )  |`  V )  =  (/) ) )
5048, 49mp1i 13 . . . . . . . . 9  |-  ( ( ( W  e.  Mnd  /\  U  e.  X  /\  V  C_  U )  /\  a  e.  C )  ->  ( ( ( U 
\  V )  i^i 
V )  =  (/)  <->  (
( ( U  \  V )  X.  {
( 0g `  W
) } )  |`  V )  =  (/) ) )
5146, 50mpbii 223 . . . . . . . 8  |-  ( ( ( W  e.  Mnd  /\  U  e.  X  /\  V  C_  U )  /\  a  e.  C )  ->  ( ( ( U 
\  V )  X. 
{ ( 0g `  W ) } )  |`  V )  =  (/) )
5244, 51uneq12d 3768 . . . . . . 7  |-  ( ( ( W  e.  Mnd  /\  U  e.  X  /\  V  C_  U )  /\  a  e.  C )  ->  ( ( a  |`  V )  u.  (
( ( U  \  V )  X.  {
( 0g `  W
) } )  |`  V ) )  =  ( a  u.  (/) ) )
5341, 52syl5eq 2668 . . . . . 6  |-  ( ( ( W  e.  Mnd  /\  U  e.  X  /\  V  C_  U )  /\  a  e.  C )  ->  ( ( a  u.  ( ( U  \  V )  X.  {
( 0g `  W
) } ) )  |`  V )  =  ( a  u.  (/) ) )
54 un0 3967 . . . . . 6  |-  ( a  u.  (/) )  =  a
5553, 54syl6eq 2672 . . . . 5  |-  ( ( ( W  e.  Mnd  /\  U  e.  X  /\  V  C_  U )  /\  a  e.  C )  ->  ( ( a  u.  ( ( U  \  V )  X.  {
( 0g `  W
) } ) )  |`  V )  =  a )
5640, 55eqtr2d 2657 . . . 4  |-  ( ( ( W  e.  Mnd  /\  U  e.  X  /\  V  C_  U )  /\  a  e.  C )  ->  a  =  ( F `
 ( a  u.  ( ( U  \  V )  X.  {
( 0g `  W
) } ) ) ) )
57 fveq2 6191 . . . . . 6  |-  ( b  =  ( a  u.  ( ( U  \  V )  X.  {
( 0g `  W
) } ) )  ->  ( F `  b )  =  ( F `  ( a  u.  ( ( U 
\  V )  X. 
{ ( 0g `  W ) } ) ) ) )
5857eqeq2d 2632 . . . . 5  |-  ( b  =  ( a  u.  ( ( U  \  V )  X.  {
( 0g `  W
) } ) )  ->  ( a  =  ( F `  b
)  <->  a  =  ( F `  ( a  u.  ( ( U 
\  V )  X. 
{ ( 0g `  W ) } ) ) ) ) )
5958rspcev 3309 . . . 4  |-  ( ( ( a  u.  (
( U  \  V
)  X.  { ( 0g `  W ) } ) )  e.  B  /\  a  =  ( F `  (
a  u.  ( ( U  \  V )  X.  { ( 0g
`  W ) } ) ) ) )  ->  E. b  e.  B  a  =  ( F `  b ) )
6038, 56, 59syl2anc 693 . . 3  |-  ( ( ( W  e.  Mnd  /\  U  e.  X  /\  V  C_  U )  /\  a  e.  C )  ->  E. b  e.  B  a  =  ( F `  b ) )
6160ralrimiva 2966 . 2  |-  ( ( W  e.  Mnd  /\  U  e.  X  /\  V  C_  U )  ->  A. a  e.  C  E. b  e.  B  a  =  ( F `  b ) )
62 dffo3 6374 . 2  |-  ( F : B -onto-> C  <->  ( F : B --> C  /\  A. a  e.  C  E. b  e.  B  a  =  ( F `  b ) ) )
636, 61, 62sylanbrc 698 1  |-  ( ( W  e.  Mnd  /\  U  e.  X  /\  V  C_  U )  ->  F : B -onto-> C )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   _Vcvv 3200    \ cdif 3571    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915   {csn 4177    |-> cmpt 4729    X. cxp 5112    |` cres 5116    Fn wfn 5883   -->wf 5884   -onto->wfo 5886   ` cfv 5888  (class class class)co 6650   Basecbs 15857   0gc0g 16100    ^s cpws 16107   Mndcmnd 17294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-hom 15966  df-cco 15967  df-0g 16102  df-prds 16108  df-pws 16110  df-mgm 17242  df-sgrp 17284  df-mnd 17295
This theorem is referenced by:  pwslnmlem2  37663
  Copyright terms: Public domain W3C validator