Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pwssplit4 Structured version   Visualization version   Unicode version

Theorem pwssplit4 37659
Description: Splitting for structure powers 4: maps isomorphically onto the other half. (Contributed by Stefan O'Rear, 25-Jan-2015.)
Hypotheses
Ref Expression
pwssplit4.e  |-  E  =  ( R  ^s  ( A  u.  B ) )
pwssplit4.g  |-  G  =  ( Base `  E
)
pwssplit4.z  |-  .0.  =  ( 0g `  R )
pwssplit4.k  |-  K  =  { y  e.  G  |  ( y  |`  A )  =  ( A  X.  {  .0.  } ) }
pwssplit4.f  |-  F  =  ( x  e.  K  |->  ( x  |`  B ) )
pwssplit4.c  |-  C  =  ( R  ^s  A )
pwssplit4.d  |-  D  =  ( R  ^s  B )
pwssplit4.l  |-  L  =  ( Es  K )
Assertion
Ref Expression
pwssplit4  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  F  e.  ( L LMIso  D ) )
Distinct variable groups:    x, A, y    x, B, y    x, C, y    x, D, y   
x, E, y    x, G, y    x, K    x, L    x, R, y    x, V, y    x,  .0. , y
Allowed substitution hints:    F( x, y)    K( y)    L( y)

Proof of Theorem pwssplit4
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 pwssplit4.f . . . 4  |-  F  =  ( x  e.  K  |->  ( x  |`  B ) )
2 pwssplit4.k . . . . . 6  |-  K  =  { y  e.  G  |  ( y  |`  A )  =  ( A  X.  {  .0.  } ) }
3 ssrab2 3687 . . . . . 6  |-  { y  e.  G  |  ( y  |`  A )  =  ( A  X.  {  .0.  } ) } 
C_  G
42, 3eqsstri 3635 . . . . 5  |-  K  C_  G
5 resmpt 5449 . . . . 5  |-  ( K 
C_  G  ->  (
( x  e.  G  |->  ( x  |`  B ) )  |`  K )  =  ( x  e.  K  |->  ( x  |`  B ) ) )
64, 5ax-mp 5 . . . 4  |-  ( ( x  e.  G  |->  ( x  |`  B )
)  |`  K )  =  ( x  e.  K  |->  ( x  |`  B ) )
71, 6eqtr4i 2647 . . 3  |-  F  =  ( ( x  e.  G  |->  ( x  |`  B ) )  |`  K )
8 ssun2 3777 . . . . . 6  |-  B  C_  ( A  u.  B
)
98a1i 11 . . . . 5  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  B  C_  ( A  u.  B
) )
10 pwssplit4.e . . . . . 6  |-  E  =  ( R  ^s  ( A  u.  B ) )
11 pwssplit4.d . . . . . 6  |-  D  =  ( R  ^s  B )
12 pwssplit4.g . . . . . 6  |-  G  =  ( Base `  E
)
13 eqid 2622 . . . . . 6  |-  ( Base `  D )  =  (
Base `  D )
14 eqid 2622 . . . . . 6  |-  ( x  e.  G  |->  ( x  |`  B ) )  =  ( x  e.  G  |->  ( x  |`  B ) )
1510, 11, 12, 13, 14pwssplit3 19061 . . . . 5  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  B  C_  ( A  u.  B
) )  ->  (
x  e.  G  |->  ( x  |`  B )
)  e.  ( E LMHom 
D ) )
169, 15syld3an3 1371 . . . 4  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  ( x  e.  G  |->  ( x  |`  B ) )  e.  ( E LMHom  D ) )
17 simp1 1061 . . . . . . . . . 10  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  R  e. 
LMod )
18 lmodgrp 18870 . . . . . . . . . 10  |-  ( R  e.  LMod  ->  R  e. 
Grp )
19 grpmnd 17429 . . . . . . . . . 10  |-  ( R  e.  Grp  ->  R  e.  Mnd )
2017, 18, 193syl 18 . . . . . . . . 9  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  R  e. 
Mnd )
21 ssun1 3776 . . . . . . . . . . 11  |-  A  C_  ( A  u.  B
)
22 ssexg 4804 . . . . . . . . . . 11  |-  ( ( A  C_  ( A  u.  B )  /\  ( A  u.  B )  e.  V )  ->  A  e.  _V )
2321, 22mpan 706 . . . . . . . . . 10  |-  ( ( A  u.  B )  e.  V  ->  A  e.  _V )
24233ad2ant2 1083 . . . . . . . . 9  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  A  e. 
_V )
25 pwssplit4.c . . . . . . . . . 10  |-  C  =  ( R  ^s  A )
26 pwssplit4.z . . . . . . . . . 10  |-  .0.  =  ( 0g `  R )
2725, 26pws0g 17326 . . . . . . . . 9  |-  ( ( R  e.  Mnd  /\  A  e.  _V )  ->  ( A  X.  {  .0.  } )  =  ( 0g `  C ) )
2820, 24, 27syl2anc 693 . . . . . . . 8  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  ( A  X.  {  .0.  }
)  =  ( 0g
`  C ) )
2928eqeq2d 2632 . . . . . . 7  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  ( ( y  |`  A )  =  ( A  X.  {  .0.  } )  <->  ( y  |`  A )  =  ( 0g `  C ) ) )
3029rabbidv 3189 . . . . . 6  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  { y  e.  G  |  ( y  |`  A )  =  ( A  X.  {  .0.  } ) }  =  { y  e.  G  |  ( y  |`  A )  =  ( 0g `  C ) } )
312, 30syl5eq 2668 . . . . 5  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  K  =  { y  e.  G  |  ( y  |`  A )  =  ( 0g `  C ) } )
3221a1i 11 . . . . . . 7  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  A  C_  ( A  u.  B
) )
33 eqid 2622 . . . . . . . 8  |-  ( Base `  C )  =  (
Base `  C )
34 eqid 2622 . . . . . . . 8  |-  ( y  e.  G  |->  ( y  |`  A ) )  =  ( y  e.  G  |->  ( y  |`  A ) )
3510, 25, 12, 33, 34pwssplit3 19061 . . . . . . 7  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  A  C_  ( A  u.  B
) )  ->  (
y  e.  G  |->  ( y  |`  A )
)  e.  ( E LMHom 
C ) )
3632, 35syld3an3 1371 . . . . . 6  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  ( y  e.  G  |->  ( y  |`  A ) )  e.  ( E LMHom  C ) )
37 fvex 6201 . . . . . . . . 9  |-  ( 0g
`  C )  e. 
_V
3834mptiniseg 5629 . . . . . . . . 9  |-  ( ( 0g `  C )  e.  _V  ->  ( `' ( y  e.  G  |->  ( y  |`  A ) ) " { ( 0g `  C ) } )  =  { y  e.  G  |  ( y  |`  A )  =  ( 0g `  C ) } )
3937, 38ax-mp 5 . . . . . . . 8  |-  ( `' ( y  e.  G  |->  ( y  |`  A ) ) " { ( 0g `  C ) } )  =  {
y  e.  G  | 
( y  |`  A )  =  ( 0g `  C ) }
4039eqcomi 2631 . . . . . . 7  |-  { y  e.  G  |  ( y  |`  A )  =  ( 0g `  C ) }  =  ( `' ( y  e.  G  |->  ( y  |`  A ) ) " { ( 0g `  C ) } )
41 eqid 2622 . . . . . . 7  |-  ( 0g
`  C )  =  ( 0g `  C
)
42 eqid 2622 . . . . . . 7  |-  ( LSubSp `  E )  =  (
LSubSp `  E )
4340, 41, 42lmhmkerlss 19051 . . . . . 6  |-  ( ( y  e.  G  |->  ( y  |`  A )
)  e.  ( E LMHom 
C )  ->  { y  e.  G  |  ( y  |`  A )  =  ( 0g `  C ) }  e.  ( LSubSp `  E )
)
4436, 43syl 17 . . . . 5  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  { y  e.  G  |  ( y  |`  A )  =  ( 0g `  C ) }  e.  ( LSubSp `  E )
)
4531, 44eqeltrd 2701 . . . 4  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  K  e.  ( LSubSp `  E )
)
46 pwssplit4.l . . . . 5  |-  L  =  ( Es  K )
4742, 46reslmhm 19052 . . . 4  |-  ( ( ( x  e.  G  |->  ( x  |`  B ) )  e.  ( E LMHom 
D )  /\  K  e.  ( LSubSp `  E )
)  ->  ( (
x  e.  G  |->  ( x  |`  B )
)  |`  K )  e.  ( L LMHom  D ) )
4816, 45, 47syl2anc 693 . . 3  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  ( ( x  e.  G  |->  ( x  |`  B )
)  |`  K )  e.  ( L LMHom  D ) )
497, 48syl5eqel 2705 . 2  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  F  e.  ( L LMHom  D ) )
501fvtresfn 6284 . . . . . . 7  |-  ( a  e.  K  ->  ( F `  a )  =  ( a  |`  B ) )
51 ssexg 4804 . . . . . . . . . . 11  |-  ( ( B  C_  ( A  u.  B )  /\  ( A  u.  B )  e.  V )  ->  B  e.  _V )
528, 51mpan 706 . . . . . . . . . 10  |-  ( ( A  u.  B )  e.  V  ->  B  e.  _V )
53523ad2ant2 1083 . . . . . . . . 9  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  B  e. 
_V )
5411, 26pws0g 17326 . . . . . . . . 9  |-  ( ( R  e.  Mnd  /\  B  e.  _V )  ->  ( B  X.  {  .0.  } )  =  ( 0g `  D ) )
5520, 53, 54syl2anc 693 . . . . . . . 8  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  ( B  X.  {  .0.  }
)  =  ( 0g
`  D ) )
5655eqcomd 2628 . . . . . . 7  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  ( 0g
`  D )  =  ( B  X.  {  .0.  } ) )
5750, 56eqeqan12rd 2640 . . . . . 6  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  K )  ->  (
( F `  a
)  =  ( 0g
`  D )  <->  ( a  |`  B )  =  ( B  X.  {  .0.  } ) ) )
58 reseq1 5390 . . . . . . . . . 10  |-  ( y  =  a  ->  (
y  |`  A )  =  ( a  |`  A ) )
5958eqeq1d 2624 . . . . . . . . 9  |-  ( y  =  a  ->  (
( y  |`  A )  =  ( A  X.  {  .0.  } )  <->  ( a  |`  A )  =  ( A  X.  {  .0.  } ) ) )
6059, 2elrab2 3366 . . . . . . . 8  |-  ( a  e.  K  <->  ( a  e.  G  /\  (
a  |`  A )  =  ( A  X.  {  .0.  } ) ) )
61 uneq12 3762 . . . . . . . . . . . . 13  |-  ( ( ( a  |`  A )  =  ( A  X.  {  .0.  } )  /\  ( a  |`  B )  =  ( B  X.  {  .0.  } ) )  ->  ( ( a  |`  A )  u.  (
a  |`  B ) )  =  ( ( A  X.  {  .0.  }
)  u.  ( B  X.  {  .0.  }
) ) )
62 resundi 5410 . . . . . . . . . . . . 13  |-  ( a  |`  ( A  u.  B
) )  =  ( ( a  |`  A )  u.  ( a  |`  B ) )
63 xpundir 5172 . . . . . . . . . . . . 13  |-  ( ( A  u.  B )  X.  {  .0.  }
)  =  ( ( A  X.  {  .0.  } )  u.  ( B  X.  {  .0.  }
) )
6461, 62, 633eqtr4g 2681 . . . . . . . . . . . 12  |-  ( ( ( a  |`  A )  =  ( A  X.  {  .0.  } )  /\  ( a  |`  B )  =  ( B  X.  {  .0.  } ) )  ->  ( a  |`  ( A  u.  B
) )  =  ( ( A  u.  B
)  X.  {  .0.  } ) )
6564adantll 750 . . . . . . . . . . 11  |-  ( ( ( a  e.  G  /\  ( a  |`  A )  =  ( A  X.  {  .0.  } ) )  /\  ( a  |`  B )  =  ( B  X.  {  .0.  } ) )  ->  (
a  |`  ( A  u.  B ) )  =  ( ( A  u.  B )  X.  {  .0.  } ) )
6665adantl 482 . . . . . . . . . 10  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  (
( a  e.  G  /\  ( a  |`  A )  =  ( A  X.  {  .0.  } ) )  /\  ( a  |`  B )  =  ( B  X.  {  .0.  } ) ) )  -> 
( a  |`  ( A  u.  B )
)  =  ( ( A  u.  B )  X.  {  .0.  }
) )
67 eqid 2622 . . . . . . . . . . . 12  |-  ( Base `  R )  =  (
Base `  R )
68 simpl1 1064 . . . . . . . . . . . 12  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  (
( a  e.  G  /\  ( a  |`  A )  =  ( A  X.  {  .0.  } ) )  /\  ( a  |`  B )  =  ( B  X.  {  .0.  } ) ) )  ->  R  e.  LMod )
69 simp2 1062 . . . . . . . . . . . . 13  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  ( A  u.  B )  e.  V )
7069adantr 481 . . . . . . . . . . . 12  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  (
( a  e.  G  /\  ( a  |`  A )  =  ( A  X.  {  .0.  } ) )  /\  ( a  |`  B )  =  ( B  X.  {  .0.  } ) ) )  -> 
( A  u.  B
)  e.  V )
71 simprll 802 . . . . . . . . . . . 12  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  (
( a  e.  G  /\  ( a  |`  A )  =  ( A  X.  {  .0.  } ) )  /\  ( a  |`  B )  =  ( B  X.  {  .0.  } ) ) )  -> 
a  e.  G )
7210, 67, 12, 68, 70, 71pwselbas 16149 . . . . . . . . . . 11  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  (
( a  e.  G  /\  ( a  |`  A )  =  ( A  X.  {  .0.  } ) )  /\  ( a  |`  B )  =  ( B  X.  {  .0.  } ) ) )  -> 
a : ( A  u.  B ) --> (
Base `  R )
)
73 ffn 6045 . . . . . . . . . . 11  |-  ( a : ( A  u.  B ) --> ( Base `  R )  ->  a  Fn  ( A  u.  B
) )
74 fnresdm 6000 . . . . . . . . . . 11  |-  ( a  Fn  ( A  u.  B )  ->  (
a  |`  ( A  u.  B ) )  =  a )
7572, 73, 743syl 18 . . . . . . . . . 10  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  (
( a  e.  G  /\  ( a  |`  A )  =  ( A  X.  {  .0.  } ) )  /\  ( a  |`  B )  =  ( B  X.  {  .0.  } ) ) )  -> 
( a  |`  ( A  u.  B )
)  =  a )
7610, 26pws0g 17326 . . . . . . . . . . . . 13  |-  ( ( R  e.  Mnd  /\  ( A  u.  B
)  e.  V )  ->  ( ( A  u.  B )  X. 
{  .0.  } )  =  ( 0g `  E ) )
7720, 69, 76syl2anc 693 . . . . . . . . . . . 12  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  ( ( A  u.  B )  X.  {  .0.  }
)  =  ( 0g
`  E ) )
7810pwslmod 18970 . . . . . . . . . . . . . . 15  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V )  ->  E  e.  LMod )
79783adant3 1081 . . . . . . . . . . . . . 14  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  E  e. 
LMod )
8042lsssubg 18957 . . . . . . . . . . . . . 14  |-  ( ( E  e.  LMod  /\  K  e.  ( LSubSp `  E )
)  ->  K  e.  (SubGrp `  E ) )
8179, 45, 80syl2anc 693 . . . . . . . . . . . . 13  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  K  e.  (SubGrp `  E )
)
82 eqid 2622 . . . . . . . . . . . . . 14  |-  ( 0g
`  E )  =  ( 0g `  E
)
8346, 82subg0 17600 . . . . . . . . . . . . 13  |-  ( K  e.  (SubGrp `  E
)  ->  ( 0g `  E )  =  ( 0g `  L ) )
8481, 83syl 17 . . . . . . . . . . . 12  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  ( 0g
`  E )  =  ( 0g `  L
) )
8577, 84eqtrd 2656 . . . . . . . . . . 11  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  ( ( A  u.  B )  X.  {  .0.  }
)  =  ( 0g
`  L ) )
8685adantr 481 . . . . . . . . . 10  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  (
( a  e.  G  /\  ( a  |`  A )  =  ( A  X.  {  .0.  } ) )  /\  ( a  |`  B )  =  ( B  X.  {  .0.  } ) ) )  -> 
( ( A  u.  B )  X.  {  .0.  } )  =  ( 0g `  L ) )
8766, 75, 863eqtr3d 2664 . . . . . . . . 9  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  (
( a  e.  G  /\  ( a  |`  A )  =  ( A  X.  {  .0.  } ) )  /\  ( a  |`  B )  =  ( B  X.  {  .0.  } ) ) )  -> 
a  =  ( 0g
`  L ) )
8887exp32 631 . . . . . . . 8  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  ( ( a  e.  G  /\  ( a  |`  A )  =  ( A  X.  {  .0.  } ) )  ->  ( ( a  |`  B )  =  ( B  X.  {  .0.  } )  ->  a  =  ( 0g `  L ) ) ) )
8960, 88syl5bi 232 . . . . . . 7  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  ( a  e.  K  ->  (
( a  |`  B )  =  ( B  X.  {  .0.  } )  -> 
a  =  ( 0g
`  L ) ) ) )
9089imp 445 . . . . . 6  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  K )  ->  (
( a  |`  B )  =  ( B  X.  {  .0.  } )  -> 
a  =  ( 0g
`  L ) ) )
9157, 90sylbid 230 . . . . 5  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  K )  ->  (
( F `  a
)  =  ( 0g
`  D )  -> 
a  =  ( 0g
`  L ) ) )
9291ralrimiva 2966 . . . 4  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  A. a  e.  K  ( ( F `  a )  =  ( 0g `  D )  ->  a  =  ( 0g `  L ) ) )
93 lmghm 19031 . . . . 5  |-  ( F  e.  ( L LMHom  D
)  ->  F  e.  ( L  GrpHom  D ) )
9446, 12ressbas2 15931 . . . . . . 7  |-  ( K 
C_  G  ->  K  =  ( Base `  L
) )
954, 94ax-mp 5 . . . . . 6  |-  K  =  ( Base `  L
)
96 eqid 2622 . . . . . 6  |-  ( 0g
`  L )  =  ( 0g `  L
)
97 eqid 2622 . . . . . 6  |-  ( 0g
`  D )  =  ( 0g `  D
)
9895, 13, 96, 97ghmf1 17689 . . . . 5  |-  ( F  e.  ( L  GrpHom  D )  ->  ( F : K -1-1-> ( Base `  D
)  <->  A. a  e.  K  ( ( F `  a )  =  ( 0g `  D )  ->  a  =  ( 0g `  L ) ) ) )
9949, 93, 983syl 18 . . . 4  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  ( F : K -1-1-> ( Base `  D )  <->  A. a  e.  K  ( ( F `  a )  =  ( 0g `  D )  ->  a  =  ( 0g `  L ) ) ) )
10092, 99mpbird 247 . . 3  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  F : K -1-1-> ( Base `  D
) )
101 eqid 2622 . . . . . 6  |-  ( Base `  L )  =  (
Base `  L )
102101, 13lmhmf 19034 . . . . 5  |-  ( F  e.  ( L LMHom  D
)  ->  F :
( Base `  L ) --> ( Base `  D )
)
103 frn 6053 . . . . 5  |-  ( F : ( Base `  L
) --> ( Base `  D
)  ->  ran  F  C_  ( Base `  D )
)
10449, 102, 1033syl 18 . . . 4  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  ran  F  C_  ( Base `  D
) )
10511, 67, 13pwselbasb 16148 . . . . . . . . . . . . . . 15  |-  ( ( R  e.  LMod  /\  B  e.  _V )  ->  (
a  e.  ( Base `  D )  <->  a : B
--> ( Base `  R
) ) )
10617, 53, 105syl2anc 693 . . . . . . . . . . . . . 14  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  ( a  e.  ( Base `  D
)  <->  a : B --> ( Base `  R )
) )
107106biimpa 501 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  ( Base `  D
) )  ->  a : B --> ( Base `  R
) )
108 fvex 6201 . . . . . . . . . . . . . . . . 17  |-  ( 0g
`  R )  e. 
_V
10926, 108eqeltri 2697 . . . . . . . . . . . . . . . 16  |-  .0.  e.  _V
110109fconst 6091 . . . . . . . . . . . . . . 15  |-  ( A  X.  {  .0.  }
) : A --> {  .0.  }
111110a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  ( Base `  D
) )  ->  ( A  X.  {  .0.  }
) : A --> {  .0.  } )
11220adantr 481 . . . . . . . . . . . . . . . 16  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  ( Base `  D
) )  ->  R  e.  Mnd )
11367, 26mndidcl 17308 . . . . . . . . . . . . . . . 16  |-  ( R  e.  Mnd  ->  .0.  e.  ( Base `  R
) )
114112, 113syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  ( Base `  D
) )  ->  .0.  e.  ( Base `  R
) )
115114snssd 4340 . . . . . . . . . . . . . 14  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  ( Base `  D
) )  ->  {  .0.  } 
C_  ( Base `  R
) )
116111, 115fssd 6057 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  ( Base `  D
) )  ->  ( A  X.  {  .0.  }
) : A --> ( Base `  R ) )
117 incom 3805 . . . . . . . . . . . . . . 15  |-  ( B  i^i  A )  =  ( A  i^i  B
)
118 simp3 1063 . . . . . . . . . . . . . . 15  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  ( A  i^i  B )  =  (/) )
119117, 118syl5eq 2668 . . . . . . . . . . . . . 14  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  ( B  i^i  A )  =  (/) )
120119adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  ( Base `  D
) )  ->  ( B  i^i  A )  =  (/) )
121 fun 6066 . . . . . . . . . . . . 13  |-  ( ( ( a : B --> ( Base `  R )  /\  ( A  X.  {  .0.  } ) : A --> ( Base `  R )
)  /\  ( B  i^i  A )  =  (/) )  ->  ( a  u.  ( A  X.  {  .0.  } ) ) : ( B  u.  A
) --> ( ( Base `  R )  u.  ( Base `  R ) ) )
122107, 116, 120, 121syl21anc 1325 . . . . . . . . . . . 12  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  ( Base `  D
) )  ->  (
a  u.  ( A  X.  {  .0.  }
) ) : ( B  u.  A ) --> ( ( Base `  R
)  u.  ( Base `  R ) ) )
123 uncom 3757 . . . . . . . . . . . . 13  |-  ( B  u.  A )  =  ( A  u.  B
)
124 unidm 3756 . . . . . . . . . . . . 13  |-  ( (
Base `  R )  u.  ( Base `  R
) )  =  (
Base `  R )
125123, 124feq23i 6039 . . . . . . . . . . . 12  |-  ( ( a  u.  ( A  X.  {  .0.  }
) ) : ( B  u.  A ) --> ( ( Base `  R
)  u.  ( Base `  R ) )  <->  ( a  u.  ( A  X.  {  .0.  } ) ) : ( A  u.  B
) --> ( Base `  R
) )
126122, 125sylib 208 . . . . . . . . . . 11  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  ( Base `  D
) )  ->  (
a  u.  ( A  X.  {  .0.  }
) ) : ( A  u.  B ) --> ( Base `  R
) )
12710, 67, 12pwselbasb 16148 . . . . . . . . . . . . 13  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V )  ->  (
( a  u.  ( A  X.  {  .0.  }
) )  e.  G  <->  ( a  u.  ( A  X.  {  .0.  }
) ) : ( A  u.  B ) --> ( Base `  R
) ) )
1281273adant3 1081 . . . . . . . . . . . 12  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  ( ( a  u.  ( A  X.  {  .0.  }
) )  e.  G  <->  ( a  u.  ( A  X.  {  .0.  }
) ) : ( A  u.  B ) --> ( Base `  R
) ) )
129128adantr 481 . . . . . . . . . . 11  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  ( Base `  D
) )  ->  (
( a  u.  ( A  X.  {  .0.  }
) )  e.  G  <->  ( a  u.  ( A  X.  {  .0.  }
) ) : ( A  u.  B ) --> ( Base `  R
) ) )
130126, 129mpbird 247 . . . . . . . . . 10  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  ( Base `  D
) )  ->  (
a  u.  ( A  X.  {  .0.  }
) )  e.  G
)
131 simpl3 1066 . . . . . . . . . . . . . 14  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  ( Base `  D
) )  ->  ( A  i^i  B )  =  (/) )
132117, 131syl5eq 2668 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  ( Base `  D
) )  ->  ( B  i^i  A )  =  (/) )
133 ffn 6045 . . . . . . . . . . . . . 14  |-  ( a : B --> ( Base `  R )  ->  a  Fn  B )
134 fnresdisj 6001 . . . . . . . . . . . . . 14  |-  ( a  Fn  B  ->  (
( B  i^i  A
)  =  (/)  <->  ( a  |`  A )  =  (/) ) )
135107, 133, 1343syl 18 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  ( Base `  D
) )  ->  (
( B  i^i  A
)  =  (/)  <->  ( a  |`  A )  =  (/) ) )
136132, 135mpbid 222 . . . . . . . . . . . 12  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  ( Base `  D
) )  ->  (
a  |`  A )  =  (/) )
137 fnconstg 6093 . . . . . . . . . . . . . 14  |-  (  .0. 
e.  _V  ->  ( A  X.  {  .0.  }
)  Fn  A )
138 fnresdm 6000 . . . . . . . . . . . . . 14  |-  ( ( A  X.  {  .0.  } )  Fn  A  -> 
( ( A  X.  {  .0.  } )  |`  A )  =  ( A  X.  {  .0.  } ) )
139109, 137, 138mp2b 10 . . . . . . . . . . . . 13  |-  ( ( A  X.  {  .0.  } )  |`  A )  =  ( A  X.  {  .0.  } )
140139a1i 11 . . . . . . . . . . . 12  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  ( Base `  D
) )  ->  (
( A  X.  {  .0.  } )  |`  A )  =  ( A  X.  {  .0.  } ) )
141136, 140uneq12d 3768 . . . . . . . . . . 11  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  ( Base `  D
) )  ->  (
( a  |`  A )  u.  ( ( A  X.  {  .0.  }
)  |`  A ) )  =  ( (/)  u.  ( A  X.  {  .0.  }
) ) )
142 resundir 5411 . . . . . . . . . . 11  |-  ( ( a  u.  ( A  X.  {  .0.  }
) )  |`  A )  =  ( ( a  |`  A )  u.  (
( A  X.  {  .0.  } )  |`  A ) )
143 uncom 3757 . . . . . . . . . . . 12  |-  ( (/)  u.  ( A  X.  {  .0.  } ) )  =  ( ( A  X.  {  .0.  } )  u.  (/) )
144 un0 3967 . . . . . . . . . . . 12  |-  ( ( A  X.  {  .0.  } )  u.  (/) )  =  ( A  X.  {  .0.  } )
145143, 144eqtr2i 2645 . . . . . . . . . . 11  |-  ( A  X.  {  .0.  }
)  =  ( (/)  u.  ( A  X.  {  .0.  } ) )
146141, 142, 1453eqtr4g 2681 . . . . . . . . . 10  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  ( Base `  D
) )  ->  (
( a  u.  ( A  X.  {  .0.  }
) )  |`  A )  =  ( A  X.  {  .0.  } ) )
147 reseq1 5390 . . . . . . . . . . . 12  |-  ( y  =  ( a  u.  ( A  X.  {  .0.  } ) )  -> 
( y  |`  A )  =  ( ( a  u.  ( A  X.  {  .0.  } ) )  |`  A ) )
148147eqeq1d 2624 . . . . . . . . . . 11  |-  ( y  =  ( a  u.  ( A  X.  {  .0.  } ) )  -> 
( ( y  |`  A )  =  ( A  X.  {  .0.  } )  <->  ( ( a  u.  ( A  X.  {  .0.  } ) )  |`  A )  =  ( A  X.  {  .0.  } ) ) )
149148, 2elrab2 3366 . . . . . . . . . 10  |-  ( ( a  u.  ( A  X.  {  .0.  }
) )  e.  K  <->  ( ( a  u.  ( A  X.  {  .0.  }
) )  e.  G  /\  ( ( a  u.  ( A  X.  {  .0.  } ) )  |`  A )  =  ( A  X.  {  .0.  } ) ) )
150130, 146, 149sylanbrc 698 . . . . . . . . 9  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  ( Base `  D
) )  ->  (
a  u.  ( A  X.  {  .0.  }
) )  e.  K
)
151 resexg 5442 . . . . . . . . . 10  |-  ( ( a  u.  ( A  X.  {  .0.  }
) )  e.  K  ->  ( ( a  u.  ( A  X.  {  .0.  } ) )  |`  B )  e.  _V )
152150, 151syl 17 . . . . . . . . 9  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  ( Base `  D
) )  ->  (
( a  u.  ( A  X.  {  .0.  }
) )  |`  B )  e.  _V )
153 reseq1 5390 . . . . . . . . . 10  |-  ( x  =  ( a  u.  ( A  X.  {  .0.  } ) )  -> 
( x  |`  B )  =  ( ( a  u.  ( A  X.  {  .0.  } ) )  |`  B ) )
154153, 1fvmptg 6280 . . . . . . . . 9  |-  ( ( ( a  u.  ( A  X.  {  .0.  }
) )  e.  K  /\  ( ( a  u.  ( A  X.  {  .0.  } ) )  |`  B )  e.  _V )  ->  ( F `  ( a  u.  ( A  X.  {  .0.  }
) ) )  =  ( ( a  u.  ( A  X.  {  .0.  } ) )  |`  B ) )
155150, 152, 154syl2anc 693 . . . . . . . 8  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  ( Base `  D
) )  ->  ( F `  ( a  u.  ( A  X.  {  .0.  } ) ) )  =  ( ( a  u.  ( A  X.  {  .0.  } ) )  |`  B ) )
156 resundir 5411 . . . . . . . . 9  |-  ( ( a  u.  ( A  X.  {  .0.  }
) )  |`  B )  =  ( ( a  |`  B )  u.  (
( A  X.  {  .0.  } )  |`  B ) )
157 fnresdm 6000 . . . . . . . . . . . 12  |-  ( a  Fn  B  ->  (
a  |`  B )  =  a )
158107, 133, 1573syl 18 . . . . . . . . . . 11  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  ( Base `  D
) )  ->  (
a  |`  B )  =  a )
159 ffn 6045 . . . . . . . . . . . . . . 15  |-  ( ( A  X.  {  .0.  } ) : A --> {  .0.  }  ->  ( A  X.  {  .0.  } )  Fn  A )
160 fnresdisj 6001 . . . . . . . . . . . . . . 15  |-  ( ( A  X.  {  .0.  } )  Fn  A  -> 
( ( A  i^i  B )  =  (/)  <->  ( ( A  X.  {  .0.  }
)  |`  B )  =  (/) ) )
161110, 159, 160mp2b 10 . . . . . . . . . . . . . 14  |-  ( ( A  i^i  B )  =  (/)  <->  ( ( A  X.  {  .0.  }
)  |`  B )  =  (/) )
162161biimpi 206 . . . . . . . . . . . . 13  |-  ( ( A  i^i  B )  =  (/)  ->  ( ( A  X.  {  .0.  } )  |`  B )  =  (/) )
1631623ad2ant3 1084 . . . . . . . . . . . 12  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  ( ( A  X.  {  .0.  } )  |`  B )  =  (/) )
164163adantr 481 . . . . . . . . . . 11  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  ( Base `  D
) )  ->  (
( A  X.  {  .0.  } )  |`  B )  =  (/) )
165158, 164uneq12d 3768 . . . . . . . . . 10  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  ( Base `  D
) )  ->  (
( a  |`  B )  u.  ( ( A  X.  {  .0.  }
)  |`  B ) )  =  ( a  u.  (/) ) )
166 un0 3967 . . . . . . . . . 10  |-  ( a  u.  (/) )  =  a
167165, 166syl6eq 2672 . . . . . . . . 9  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  ( Base `  D
) )  ->  (
( a  |`  B )  u.  ( ( A  X.  {  .0.  }
)  |`  B ) )  =  a )
168156, 167syl5eq 2668 . . . . . . . 8  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  ( Base `  D
) )  ->  (
( a  u.  ( A  X.  {  .0.  }
) )  |`  B )  =  a )
169155, 168eqtrd 2656 . . . . . . 7  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  ( Base `  D
) )  ->  ( F `  ( a  u.  ( A  X.  {  .0.  } ) ) )  =  a )
17095, 13lmhmf 19034 . . . . . . . . . 10  |-  ( F  e.  ( L LMHom  D
)  ->  F : K
--> ( Base `  D
) )
171 ffn 6045 . . . . . . . . . 10  |-  ( F : K --> ( Base `  D )  ->  F  Fn  K )
17249, 170, 1713syl 18 . . . . . . . . 9  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  F  Fn  K )
173172adantr 481 . . . . . . . 8  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  ( Base `  D
) )  ->  F  Fn  K )
174 fnfvelrn 6356 . . . . . . . 8  |-  ( ( F  Fn  K  /\  ( a  u.  ( A  X.  {  .0.  }
) )  e.  K
)  ->  ( F `  ( a  u.  ( A  X.  {  .0.  }
) ) )  e. 
ran  F )
175173, 150, 174syl2anc 693 . . . . . . 7  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  ( Base `  D
) )  ->  ( F `  ( a  u.  ( A  X.  {  .0.  } ) ) )  e.  ran  F )
176169, 175eqeltrrd 2702 . . . . . 6  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  ( Base `  D
) )  ->  a  e.  ran  F )
177176ex 450 . . . . 5  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  ( a  e.  ( Base `  D
)  ->  a  e.  ran  F ) )
178177ssrdv 3609 . . . 4  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  ( Base `  D )  C_  ran  F )
179104, 178eqssd 3620 . . 3  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  ran  F  =  ( Base `  D
) )
180 dff1o5 6146 . . 3  |-  ( F : K -1-1-onto-> ( Base `  D
)  <->  ( F : K -1-1-> ( Base `  D
)  /\  ran  F  =  ( Base `  D
) ) )
181100, 179, 180sylanbrc 698 . 2  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  F : K
-1-1-onto-> ( Base `  D )
)
18295, 13islmim 19062 . 2  |-  ( F  e.  ( L LMIso  D
)  <->  ( F  e.  ( L LMHom  D )  /\  F : K -1-1-onto-> ( Base `  D ) ) )
18349, 181, 182sylanbrc 698 1  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  F  e.  ( L LMIso  D ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916   _Vcvv 3200    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915   {csn 4177    |-> cmpt 4729    X. cxp 5112   `'ccnv 5113   ran crn 5115    |` cres 5116   "cima 5117    Fn wfn 5883   -->wf 5884   -1-1->wf1 5885   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650   Basecbs 15857   ↾s cress 15858   0gc0g 16100    ^s cpws 16107   Mndcmnd 17294   Grpcgrp 17422  SubGrpcsubg 17588    GrpHom cghm 17657   LModclmod 18863   LSubSpclss 18932   LMHom clmhm 19019   LMIso clmim 19020
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-hom 15966  df-cco 15967  df-0g 16102  df-prds 16108  df-pws 16110  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-ghm 17658  df-mgp 18490  df-ur 18502  df-ring 18549  df-lmod 18865  df-lss 18933  df-lmhm 19022  df-lmim 19023
This theorem is referenced by:  pwslnmlem2  37663
  Copyright terms: Public domain W3C validator