MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frsucmptn Structured version   Visualization version   Unicode version

Theorem frsucmptn 7534
Description: The value of the finite recursive definition generator at a successor (special case where the characteristic function is a mapping abstraction and where the mapping class 
D is a proper class). This is a technical lemma that can be used together with frsucmpt 7533 to help eliminate redundant sethood antecedents. (Contributed by Scott Fenton, 19-Feb-2011.) (Revised by Mario Carneiro, 11-Sep-2015.)
Hypotheses
Ref Expression
frsucmpt.1  |-  F/_ x A
frsucmpt.2  |-  F/_ x B
frsucmpt.3  |-  F/_ x D
frsucmpt.4  |-  F  =  ( rec ( ( x  e.  _V  |->  C ) ,  A )  |`  om )
frsucmpt.5  |-  ( x  =  ( F `  B )  ->  C  =  D )
Assertion
Ref Expression
frsucmptn  |-  ( -.  D  e.  _V  ->  ( F `  suc  B
)  =  (/) )

Proof of Theorem frsucmptn
StepHypRef Expression
1 frsucmpt.4 . . 3  |-  F  =  ( rec ( ( x  e.  _V  |->  C ) ,  A )  |`  om )
21fveq1i 6192 . 2  |-  ( F `
 suc  B )  =  ( ( rec ( ( x  e. 
_V  |->  C ) ,  A )  |`  om ) `  suc  B )
3 frfnom 7530 . . . . . 6  |-  ( rec ( ( x  e. 
_V  |->  C ) ,  A )  |`  om )  Fn  om
4 fndm 5990 . . . . . 6  |-  ( ( rec ( ( x  e.  _V  |->  C ) ,  A )  |`  om )  Fn  om  ->  dom  ( rec ( ( x  e.  _V  |->  C ) ,  A )  |`  om )  =  om )
53, 4ax-mp 5 . . . . 5  |-  dom  ( rec ( ( x  e. 
_V  |->  C ) ,  A )  |`  om )  =  om
65eleq2i 2693 . . . 4  |-  ( suc 
B  e.  dom  ( rec ( ( x  e. 
_V  |->  C ) ,  A )  |`  om )  <->  suc 
B  e.  om )
7 peano2b 7081 . . . . 5  |-  ( B  e.  om  <->  suc  B  e. 
om )
8 frsuc 7532 . . . . . . . 8  |-  ( B  e.  om  ->  (
( rec ( ( x  e.  _V  |->  C ) ,  A )  |`  om ) `  suc  B )  =  ( ( x  e.  _V  |->  C ) `  ( ( rec ( ( x  e.  _V  |->  C ) ,  A )  |`  om ) `  B ) ) )
91fveq1i 6192 . . . . . . . . 9  |-  ( F `
 B )  =  ( ( rec (
( x  e.  _V  |->  C ) ,  A
)  |`  om ) `  B )
109fveq2i 6194 . . . . . . . 8  |-  ( ( x  e.  _V  |->  C ) `  ( F `
 B ) )  =  ( ( x  e.  _V  |->  C ) `
 ( ( rec ( ( x  e. 
_V  |->  C ) ,  A )  |`  om ) `  B ) )
118, 10syl6eqr 2674 . . . . . . 7  |-  ( B  e.  om  ->  (
( rec ( ( x  e.  _V  |->  C ) ,  A )  |`  om ) `  suc  B )  =  ( ( x  e.  _V  |->  C ) `  ( F `
 B ) ) )
12 nfmpt1 4747 . . . . . . . . . . . 12  |-  F/_ x
( x  e.  _V  |->  C )
13 frsucmpt.1 . . . . . . . . . . . 12  |-  F/_ x A
1412, 13nfrdg 7510 . . . . . . . . . . 11  |-  F/_ x rec ( ( x  e. 
_V  |->  C ) ,  A )
15 nfcv 2764 . . . . . . . . . . 11  |-  F/_ x om
1614, 15nfres 5398 . . . . . . . . . 10  |-  F/_ x
( rec ( ( x  e.  _V  |->  C ) ,  A )  |`  om )
171, 16nfcxfr 2762 . . . . . . . . 9  |-  F/_ x F
18 frsucmpt.2 . . . . . . . . 9  |-  F/_ x B
1917, 18nffv 6198 . . . . . . . 8  |-  F/_ x
( F `  B
)
20 frsucmpt.3 . . . . . . . 8  |-  F/_ x D
21 frsucmpt.5 . . . . . . . 8  |-  ( x  =  ( F `  B )  ->  C  =  D )
22 eqid 2622 . . . . . . . 8  |-  ( x  e.  _V  |->  C )  =  ( x  e. 
_V  |->  C )
2319, 20, 21, 22fvmptnf 6302 . . . . . . 7  |-  ( -.  D  e.  _V  ->  ( ( x  e.  _V  |->  C ) `  ( F `  B )
)  =  (/) )
2411, 23sylan9eqr 2678 . . . . . 6  |-  ( ( -.  D  e.  _V  /\  B  e.  om )  ->  ( ( rec (
( x  e.  _V  |->  C ) ,  A
)  |`  om ) `  suc  B )  =  (/) )
2524ex 450 . . . . 5  |-  ( -.  D  e.  _V  ->  ( B  e.  om  ->  ( ( rec ( ( x  e.  _V  |->  C ) ,  A )  |`  om ) `  suc  B )  =  (/) ) )
267, 25syl5bir 233 . . . 4  |-  ( -.  D  e.  _V  ->  ( suc  B  e.  om  ->  ( ( rec (
( x  e.  _V  |->  C ) ,  A
)  |`  om ) `  suc  B )  =  (/) ) )
276, 26syl5bi 232 . . 3  |-  ( -.  D  e.  _V  ->  ( suc  B  e.  dom  ( rec ( ( x  e.  _V  |->  C ) ,  A )  |`  om )  ->  ( ( rec ( ( x  e.  _V  |->  C ) ,  A )  |`  om ) `  suc  B
)  =  (/) ) )
28 ndmfv 6218 . . 3  |-  ( -. 
suc  B  e.  dom  ( rec ( ( x  e.  _V  |->  C ) ,  A )  |`  om )  ->  ( ( rec ( ( x  e.  _V  |->  C ) ,  A )  |`  om ) `  suc  B
)  =  (/) )
2927, 28pm2.61d1 171 . 2  |-  ( -.  D  e.  _V  ->  ( ( rec ( ( x  e.  _V  |->  C ) ,  A )  |`  om ) `  suc  B )  =  (/) )
302, 29syl5eq 2668 1  |-  ( -.  D  e.  _V  ->  ( F `  suc  B
)  =  (/) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1483    e. wcel 1990   F/_wnfc 2751   _Vcvv 3200   (/)c0 3915    |-> cmpt 4729   dom cdm 5114    |` cres 5116   suc csuc 5725    Fn wfn 5883   ` cfv 5888   omcom 7065   reccrdg 7505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506
This theorem is referenced by:  trpredlem1  31727
  Copyright terms: Public domain W3C validator