MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprodf1o Structured version   Visualization version   Unicode version

Theorem fprodf1o 14676
Description: Re-index a finite product using a bijection. (Contributed by Scott Fenton, 7-Dec-2017.)
Hypotheses
Ref Expression
fprodf1o.1  |-  ( k  =  G  ->  B  =  D )
fprodf1o.2  |-  ( ph  ->  C  e.  Fin )
fprodf1o.3  |-  ( ph  ->  F : C -1-1-onto-> A )
fprodf1o.4  |-  ( (
ph  /\  n  e.  C )  ->  ( F `  n )  =  G )
fprodf1o.5  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
Assertion
Ref Expression
fprodf1o  |-  ( ph  ->  prod_ k  e.  A  B  =  prod_ n  e.  C  D )
Distinct variable groups:    A, k, n    B, n    C, n    D, k    n, F    k, G    k, n, ph
Allowed substitution hints:    B( k)    C( k)    D( n)    F( k)    G( n)

Proof of Theorem fprodf1o
Dummy variables  f  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prod0 14673 . . . 4  |-  prod_ k  e.  (/)  B  =  1
2 fprodf1o.3 . . . . . . . . 9  |-  ( ph  ->  F : C -1-1-onto-> A )
32adantr 481 . . . . . . . 8  |-  ( (
ph  /\  C  =  (/) )  ->  F : C
-1-1-onto-> A )
4 f1oeq2 6128 . . . . . . . . 9  |-  ( C  =  (/)  ->  ( F : C -1-1-onto-> A  <->  F : (/) -1-1-onto-> A ) )
54adantl 482 . . . . . . . 8  |-  ( (
ph  /\  C  =  (/) )  ->  ( F : C -1-1-onto-> A  <->  F : (/) -1-1-onto-> A ) )
63, 5mpbid 222 . . . . . . 7  |-  ( (
ph  /\  C  =  (/) )  ->  F : (/) -1-1-onto-> A )
7 f1ofo 6144 . . . . . . 7  |-  ( F : (/)
-1-1-onto-> A  ->  F : (/) -onto-> A )
86, 7syl 17 . . . . . 6  |-  ( (
ph  /\  C  =  (/) )  ->  F : (/)
-onto-> A )
9 fo00 6172 . . . . . . 7  |-  ( F : (/) -onto-> A  <->  ( F  =  (/)  /\  A  =  (/) ) )
109simprbi 480 . . . . . 6  |-  ( F : (/) -onto-> A  ->  A  =  (/) )
118, 10syl 17 . . . . 5  |-  ( (
ph  /\  C  =  (/) )  ->  A  =  (/) )
1211prodeq1d 14651 . . . 4  |-  ( (
ph  /\  C  =  (/) )  ->  prod_ k  e.  A  B  =  prod_ k  e.  (/)  B )
13 prodeq1 14639 . . . . . 6  |-  ( C  =  (/)  ->  prod_ n  e.  C  D  =  prod_ n  e.  (/)  D )
14 prod0 14673 . . . . . 6  |-  prod_ n  e.  (/)  D  =  1
1513, 14syl6eq 2672 . . . . 5  |-  ( C  =  (/)  ->  prod_ n  e.  C  D  = 
1 )
1615adantl 482 . . . 4  |-  ( (
ph  /\  C  =  (/) )  ->  prod_ n  e.  C  D  =  1 )
171, 12, 163eqtr4a 2682 . . 3  |-  ( (
ph  /\  C  =  (/) )  ->  prod_ k  e.  A  B  =  prod_ n  e.  C  D )
1817ex 450 . 2  |-  ( ph  ->  ( C  =  (/)  ->  prod_ k  e.  A  B  =  prod_ n  e.  C  D ) )
19 fveq2 6191 . . . . . . . . 9  |-  ( m  =  ( f `  n )  ->  ( F `  m )  =  ( F `  ( f `  n
) ) )
2019fveq2d 6195 . . . . . . . 8  |-  ( m  =  ( f `  n )  ->  (
( k  e.  A  |->  B ) `  ( F `  m )
)  =  ( ( k  e.  A  |->  B ) `  ( F `
 ( f `  n ) ) ) )
21 simprl 794 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 C )  e.  NN  /\  f : ( 1 ... ( # `
 C ) ) -1-1-onto-> C ) )  ->  ( # `
 C )  e.  NN )
22 simprr 796 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 C )  e.  NN  /\  f : ( 1 ... ( # `
 C ) ) -1-1-onto-> C ) )  ->  f : ( 1 ... ( # `  C
) ) -1-1-onto-> C )
23 f1of 6137 . . . . . . . . . . . 12  |-  ( F : C -1-1-onto-> A  ->  F : C
--> A )
242, 23syl 17 . . . . . . . . . . 11  |-  ( ph  ->  F : C --> A )
2524ffvelrnda 6359 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  C )  ->  ( F `  m )  e.  A )
26 fprodf1o.5 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
27 eqid 2622 . . . . . . . . . . . 12  |-  ( k  e.  A  |->  B )  =  ( k  e.  A  |->  B )
2826, 27fmptd 6385 . . . . . . . . . . 11  |-  ( ph  ->  ( k  e.  A  |->  B ) : A --> CC )
2928ffvelrnda 6359 . . . . . . . . . 10  |-  ( (
ph  /\  ( F `  m )  e.  A
)  ->  ( (
k  e.  A  |->  B ) `  ( F `
 m ) )  e.  CC )
3025, 29syldan 487 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  C )  ->  (
( k  e.  A  |->  B ) `  ( F `  m )
)  e.  CC )
3130adantlr 751 . . . . . . . 8  |-  ( ( ( ph  /\  (
( # `  C )  e.  NN  /\  f : ( 1 ... ( # `  C
) ) -1-1-onto-> C ) )  /\  m  e.  C )  ->  ( ( k  e.  A  |->  B ) `  ( F `  m ) )  e.  CC )
32 simpr 477 . . . . . . . . . . . 12  |-  ( ( ( # `  C
)  e.  NN  /\  f : ( 1 ... ( # `  C
) ) -1-1-onto-> C )  ->  f : ( 1 ... ( # `  C
) ) -1-1-onto-> C )
33 f1oco 6159 . . . . . . . . . . . 12  |-  ( ( F : C -1-1-onto-> A  /\  f : ( 1 ... ( # `  C
) ) -1-1-onto-> C )  ->  ( F  o.  f ) : ( 1 ... ( # `  C
) ) -1-1-onto-> A )
342, 32, 33syl2an 494 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( # `
 C )  e.  NN  /\  f : ( 1 ... ( # `
 C ) ) -1-1-onto-> C ) )  ->  ( F  o.  f ) : ( 1 ... ( # `  C
) ) -1-1-onto-> A )
35 f1of 6137 . . . . . . . . . . 11  |-  ( ( F  o.  f ) : ( 1 ... ( # `  C
) ) -1-1-onto-> A  ->  ( F  o.  f ) : ( 1 ... ( # `  C ) ) --> A )
3634, 35syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( # `
 C )  e.  NN  /\  f : ( 1 ... ( # `
 C ) ) -1-1-onto-> C ) )  ->  ( F  o.  f ) : ( 1 ... ( # `  C
) ) --> A )
37 fvco3 6275 . . . . . . . . . 10  |-  ( ( ( F  o.  f
) : ( 1 ... ( # `  C
) ) --> A  /\  n  e.  ( 1 ... ( # `  C
) ) )  -> 
( ( ( k  e.  A  |->  B )  o.  ( F  o.  f ) ) `  n )  =  ( ( k  e.  A  |->  B ) `  (
( F  o.  f
) `  n )
) )
3836, 37sylan 488 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( # `  C )  e.  NN  /\  f : ( 1 ... ( # `  C
) ) -1-1-onto-> C ) )  /\  n  e.  ( 1 ... ( # `  C
) ) )  -> 
( ( ( k  e.  A  |->  B )  o.  ( F  o.  f ) ) `  n )  =  ( ( k  e.  A  |->  B ) `  (
( F  o.  f
) `  n )
) )
39 f1of 6137 . . . . . . . . . . . . 13  |-  ( f : ( 1 ... ( # `  C
) ) -1-1-onto-> C  ->  f :
( 1 ... ( # `
 C ) ) --> C )
4039adantl 482 . . . . . . . . . . . 12  |-  ( ( ( # `  C
)  e.  NN  /\  f : ( 1 ... ( # `  C
) ) -1-1-onto-> C )  ->  f : ( 1 ... ( # `  C
) ) --> C )
4140adantl 482 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( # `
 C )  e.  NN  /\  f : ( 1 ... ( # `
 C ) ) -1-1-onto-> C ) )  ->  f : ( 1 ... ( # `  C
) ) --> C )
42 fvco3 6275 . . . . . . . . . . 11  |-  ( ( f : ( 1 ... ( # `  C
) ) --> C  /\  n  e.  ( 1 ... ( # `  C
) ) )  -> 
( ( F  o.  f ) `  n
)  =  ( F `
 ( f `  n ) ) )
4341, 42sylan 488 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( # `  C )  e.  NN  /\  f : ( 1 ... ( # `  C
) ) -1-1-onto-> C ) )  /\  n  e.  ( 1 ... ( # `  C
) ) )  -> 
( ( F  o.  f ) `  n
)  =  ( F `
 ( f `  n ) ) )
4443fveq2d 6195 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( # `  C )  e.  NN  /\  f : ( 1 ... ( # `  C
) ) -1-1-onto-> C ) )  /\  n  e.  ( 1 ... ( # `  C
) ) )  -> 
( ( k  e.  A  |->  B ) `  ( ( F  o.  f ) `  n
) )  =  ( ( k  e.  A  |->  B ) `  ( F `  ( f `  n ) ) ) )
4538, 44eqtrd 2656 . . . . . . . 8  |-  ( ( ( ph  /\  (
( # `  C )  e.  NN  /\  f : ( 1 ... ( # `  C
) ) -1-1-onto-> C ) )  /\  n  e.  ( 1 ... ( # `  C
) ) )  -> 
( ( ( k  e.  A  |->  B )  o.  ( F  o.  f ) ) `  n )  =  ( ( k  e.  A  |->  B ) `  ( F `  ( f `  n ) ) ) )
4620, 21, 22, 31, 45fprod 14671 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 C )  e.  NN  /\  f : ( 1 ... ( # `
 C ) ) -1-1-onto-> C ) )  ->  prod_ m  e.  C  ( ( k  e.  A  |->  B ) `  ( F `
 m ) )  =  (  seq 1
(  x.  ,  ( ( k  e.  A  |->  B )  o.  ( F  o.  f )
) ) `  ( # `
 C ) ) )
47 fprodf1o.4 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  C )  ->  ( F `  n )  =  G )
4824ffvelrnda 6359 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  C )  ->  ( F `  n )  e.  A )
4947, 48eqeltrrd 2702 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  C )  ->  G  e.  A )
50 fprodf1o.1 . . . . . . . . . . . . . 14  |-  ( k  =  G  ->  B  =  D )
5150, 27fvmpti 6281 . . . . . . . . . . . . 13  |-  ( G  e.  A  ->  (
( k  e.  A  |->  B ) `  G
)  =  (  _I 
`  D ) )
5249, 51syl 17 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  C )  ->  (
( k  e.  A  |->  B ) `  G
)  =  (  _I 
`  D ) )
5347fveq2d 6195 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  C )  ->  (
( k  e.  A  |->  B ) `  ( F `  n )
)  =  ( ( k  e.  A  |->  B ) `  G ) )
54 eqid 2622 . . . . . . . . . . . . . 14  |-  ( n  e.  C  |->  D )  =  ( n  e.  C  |->  D )
5554fvmpt2i 6290 . . . . . . . . . . . . 13  |-  ( n  e.  C  ->  (
( n  e.  C  |->  D ) `  n
)  =  (  _I 
`  D ) )
5655adantl 482 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  C )  ->  (
( n  e.  C  |->  D ) `  n
)  =  (  _I 
`  D ) )
5752, 53, 563eqtr4rd 2667 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  C )  ->  (
( n  e.  C  |->  D ) `  n
)  =  ( ( k  e.  A  |->  B ) `  ( F `
 n ) ) )
5857ralrimiva 2966 . . . . . . . . . 10  |-  ( ph  ->  A. n  e.  C  ( ( n  e.  C  |->  D ) `  n )  =  ( ( k  e.  A  |->  B ) `  ( F `  n )
) )
59 nffvmpt1 6199 . . . . . . . . . . . 12  |-  F/_ n
( ( n  e.  C  |->  D ) `  m )
6059nfeq1 2778 . . . . . . . . . . 11  |-  F/ n
( ( n  e.  C  |->  D ) `  m )  =  ( ( k  e.  A  |->  B ) `  ( F `  m )
)
61 fveq2 6191 . . . . . . . . . . . 12  |-  ( n  =  m  ->  (
( n  e.  C  |->  D ) `  n
)  =  ( ( n  e.  C  |->  D ) `  m ) )
62 fveq2 6191 . . . . . . . . . . . . 13  |-  ( n  =  m  ->  ( F `  n )  =  ( F `  m ) )
6362fveq2d 6195 . . . . . . . . . . . 12  |-  ( n  =  m  ->  (
( k  e.  A  |->  B ) `  ( F `  n )
)  =  ( ( k  e.  A  |->  B ) `  ( F `
 m ) ) )
6461, 63eqeq12d 2637 . . . . . . . . . . 11  |-  ( n  =  m  ->  (
( ( n  e.  C  |->  D ) `  n )  =  ( ( k  e.  A  |->  B ) `  ( F `  n )
)  <->  ( ( n  e.  C  |->  D ) `
 m )  =  ( ( k  e.  A  |->  B ) `  ( F `  m ) ) ) )
6560, 64rspc 3303 . . . . . . . . . 10  |-  ( m  e.  C  ->  ( A. n  e.  C  ( ( n  e.  C  |->  D ) `  n )  =  ( ( k  e.  A  |->  B ) `  ( F `  n )
)  ->  ( (
n  e.  C  |->  D ) `  m )  =  ( ( k  e.  A  |->  B ) `
 ( F `  m ) ) ) )
6658, 65mpan9 486 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  C )  ->  (
( n  e.  C  |->  D ) `  m
)  =  ( ( k  e.  A  |->  B ) `  ( F `
 m ) ) )
6766adantlr 751 . . . . . . . 8  |-  ( ( ( ph  /\  (
( # `  C )  e.  NN  /\  f : ( 1 ... ( # `  C
) ) -1-1-onto-> C ) )  /\  m  e.  C )  ->  ( ( n  e.  C  |->  D ) `  m )  =  ( ( k  e.  A  |->  B ) `  ( F `  m )
) )
6867prodeq2dv 14653 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 C )  e.  NN  /\  f : ( 1 ... ( # `
 C ) ) -1-1-onto-> C ) )  ->  prod_ m  e.  C  ( ( n  e.  C  |->  D ) `  m )  =  prod_ m  e.  C  ( ( k  e.  A  |->  B ) `  ( F `  m ) ) )
69 fveq2 6191 . . . . . . . 8  |-  ( m  =  ( ( F  o.  f ) `  n )  ->  (
( k  e.  A  |->  B ) `  m
)  =  ( ( k  e.  A  |->  B ) `  ( ( F  o.  f ) `
 n ) ) )
7028adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  ( ( # `
 C )  e.  NN  /\  f : ( 1 ... ( # `
 C ) ) -1-1-onto-> C ) )  ->  (
k  e.  A  |->  B ) : A --> CC )
7170ffvelrnda 6359 . . . . . . . 8  |-  ( ( ( ph  /\  (
( # `  C )  e.  NN  /\  f : ( 1 ... ( # `  C
) ) -1-1-onto-> C ) )  /\  m  e.  A )  ->  ( ( k  e.  A  |->  B ) `  m )  e.  CC )
7269, 21, 34, 71, 38fprod 14671 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 C )  e.  NN  /\  f : ( 1 ... ( # `
 C ) ) -1-1-onto-> C ) )  ->  prod_ m  e.  A  ( ( k  e.  A  |->  B ) `  m )  =  (  seq 1
(  x.  ,  ( ( k  e.  A  |->  B )  o.  ( F  o.  f )
) ) `  ( # `
 C ) ) )
7346, 68, 723eqtr4rd 2667 . . . . . 6  |-  ( (
ph  /\  ( ( # `
 C )  e.  NN  /\  f : ( 1 ... ( # `
 C ) ) -1-1-onto-> C ) )  ->  prod_ m  e.  A  ( ( k  e.  A  |->  B ) `  m )  =  prod_ m  e.  C  ( ( n  e.  C  |->  D ) `  m ) )
74 prodfc 14675 . . . . . 6  |-  prod_ m  e.  A  ( (
k  e.  A  |->  B ) `  m )  =  prod_ k  e.  A  B
75 prodfc 14675 . . . . . 6  |-  prod_ m  e.  C  ( (
n  e.  C  |->  D ) `  m )  =  prod_ n  e.  C  D
7673, 74, 753eqtr3g 2679 . . . . 5  |-  ( (
ph  /\  ( ( # `
 C )  e.  NN  /\  f : ( 1 ... ( # `
 C ) ) -1-1-onto-> C ) )  ->  prod_ k  e.  A  B  = 
prod_ n  e.  C  D )
7776expr 643 . . . 4  |-  ( (
ph  /\  ( # `  C
)  e.  NN )  ->  ( f : ( 1 ... ( # `
 C ) ) -1-1-onto-> C  ->  prod_ k  e.  A  B  =  prod_ n  e.  C  D ) )
7877exlimdv 1861 . . 3  |-  ( (
ph  /\  ( # `  C
)  e.  NN )  ->  ( E. f 
f : ( 1 ... ( # `  C
) ) -1-1-onto-> C  ->  prod_ k  e.  A  B  =  prod_ n  e.  C  D ) )
7978expimpd 629 . 2  |-  ( ph  ->  ( ( ( # `  C )  e.  NN  /\ 
E. f  f : ( 1 ... ( # `
 C ) ) -1-1-onto-> C )  ->  prod_ k  e.  A  B  =  prod_ n  e.  C  D ) )
80 fprodf1o.2 . . 3  |-  ( ph  ->  C  e.  Fin )
81 fz1f1o 14441 . . 3  |-  ( C  e.  Fin  ->  ( C  =  (/)  \/  (
( # `  C )  e.  NN  /\  E. f  f : ( 1 ... ( # `  C ) ) -1-1-onto-> C ) ) )
8280, 81syl 17 . 2  |-  ( ph  ->  ( C  =  (/)  \/  ( ( # `  C
)  e.  NN  /\  E. f  f : ( 1 ... ( # `  C ) ) -1-1-onto-> C ) ) )
8318, 79, 82mpjaod 396 1  |-  ( ph  ->  prod_ k  e.  A  B  =  prod_ n  e.  C  D )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   A.wral 2912   (/)c0 3915    |-> cmpt 4729    _I cid 5023    o. ccom 5118   -->wf 5884   -onto->wfo 5886   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650   Fincfn 7955   CCcc 9934   1c1 9937    x. cmul 9941   NNcn 11020   ...cfz 12326    seqcseq 12801   #chash 13117   prod_cprod 14635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-prod 14636
This theorem is referenced by:  fprodss  14678  fprodshft  14706  fprodrev  14707  fprod2dlem  14710  fprodcnv  14713  gausslemma2dlem1  25091  hgt750lemg  30732
  Copyright terms: Public domain W3C validator