MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isumshft Structured version   Visualization version   Unicode version

Theorem isumshft 14571
Description: Index shift of an infinite sum. (Contributed by Paul Chapman, 31-Oct-2007.) (Revised by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
isumshft.1  |-  Z  =  ( ZZ>= `  M )
isumshft.2  |-  W  =  ( ZZ>= `  ( M  +  K ) )
isumshft.3  |-  ( j  =  ( K  +  k )  ->  A  =  B )
isumshft.4  |-  ( ph  ->  K  e.  ZZ )
isumshft.5  |-  ( ph  ->  M  e.  ZZ )
isumshft.6  |-  ( (
ph  /\  j  e.  W )  ->  A  e.  CC )
Assertion
Ref Expression
isumshft  |-  ( ph  -> 
sum_ j  e.  W  A  =  sum_ k  e.  Z  B )
Distinct variable groups:    A, k    j, k, K    ph, j, k   
j, W, k    B, j    k, Z
Allowed substitution hints:    A( j)    B( k)    M( j, k)    Z( j)

Proof of Theorem isumshft
Dummy variables  m  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isumshft.5 . . . . . . . . 9  |-  ( ph  ->  M  e.  ZZ )
2 isumshft.4 . . . . . . . . 9  |-  ( ph  ->  K  e.  ZZ )
31, 2zaddcld 11486 . . . . . . . 8  |-  ( ph  ->  ( M  +  K
)  e.  ZZ )
4 isumshft.2 . . . . . . . . . 10  |-  W  =  ( ZZ>= `  ( M  +  K ) )
54eleq2i 2693 . . . . . . . . 9  |-  ( m  e.  W  <->  m  e.  ( ZZ>= `  ( M  +  K ) ) )
62zcnd 11483 . . . . . . . . . . 11  |-  ( ph  ->  K  e.  CC )
7 eluzelcn 11699 . . . . . . . . . . . 12  |-  ( m  e.  ( ZZ>= `  ( M  +  K )
)  ->  m  e.  CC )
87, 4eleq2s 2719 . . . . . . . . . . 11  |-  ( m  e.  W  ->  m  e.  CC )
9 isumshft.1 . . . . . . . . . . . . . 14  |-  Z  =  ( ZZ>= `  M )
10 fvex 6201 . . . . . . . . . . . . . 14  |-  ( ZZ>= `  M )  e.  _V
119, 10eqeltri 2697 . . . . . . . . . . . . 13  |-  Z  e. 
_V
1211mptex 6486 . . . . . . . . . . . 12  |-  ( k  e.  Z  |->  B )  e.  _V
1312shftval 13814 . . . . . . . . . . 11  |-  ( ( K  e.  CC  /\  m  e.  CC )  ->  ( ( ( k  e.  Z  |->  B ) 
shift  K ) `  m
)  =  ( ( k  e.  Z  |->  B ) `  ( m  -  K ) ) )
146, 8, 13syl2an 494 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  W )  ->  (
( ( k  e.  Z  |->  B )  shift  K ) `  m )  =  ( ( k  e.  Z  |->  B ) `
 ( m  -  K ) ) )
15 simpr 477 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  k  e.  Z )  ->  k  e.  Z )
16 eqid 2622 . . . . . . . . . . . . . . . . . 18  |-  ( k  e.  Z  |->  B )  =  ( k  e.  Z  |->  B )
1716fvmpt2i 6290 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  Z  ->  (
( k  e.  Z  |->  B ) `  k
)  =  (  _I 
`  B ) )
1815, 17syl 17 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  Z )  ->  (
( k  e.  Z  |->  B ) `  k
)  =  (  _I 
`  B ) )
19 eluzelcn 11699 . . . . . . . . . . . . . . . . . . . . 21  |-  ( k  e.  ( ZZ>= `  M
)  ->  k  e.  CC )
2019, 9eleq2s 2719 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  e.  Z  ->  k  e.  CC )
21 addcom 10222 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( K  e.  CC  /\  k  e.  CC )  ->  ( K  +  k )  =  ( k  +  K ) )
226, 20, 21syl2an 494 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  k  e.  Z )  ->  ( K  +  k )  =  ( k  +  K ) )
23 id 22 . . . . . . . . . . . . . . . . . . . . 21  |-  ( k  e.  Z  ->  k  e.  Z )
2423, 9syl6eleq 2711 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  e.  Z  ->  k  e.  ( ZZ>= `  M )
)
25 eluzadd 11716 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( k  e.  ( ZZ>= `  M )  /\  K  e.  ZZ )  ->  (
k  +  K )  e.  ( ZZ>= `  ( M  +  K )
) )
2624, 2, 25syl2anr 495 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  k  e.  Z )  ->  (
k  +  K )  e.  ( ZZ>= `  ( M  +  K )
) )
2722, 26eqeltrd 2701 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  k  e.  Z )  ->  ( K  +  k )  e.  ( ZZ>= `  ( M  +  K ) ) )
2827, 4syl6eleqr 2712 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  k  e.  Z )  ->  ( K  +  k )  e.  W )
29 isumshft.3 . . . . . . . . . . . . . . . . . 18  |-  ( j  =  ( K  +  k )  ->  A  =  B )
30 eqid 2622 . . . . . . . . . . . . . . . . . 18  |-  ( j  e.  W  |->  A )  =  ( j  e.  W  |->  A )
3129, 30fvmpti 6281 . . . . . . . . . . . . . . . . 17  |-  ( ( K  +  k )  e.  W  ->  (
( j  e.  W  |->  A ) `  ( K  +  k )
)  =  (  _I 
`  B ) )
3228, 31syl 17 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  Z )  ->  (
( j  e.  W  |->  A ) `  ( K  +  k )
)  =  (  _I 
`  B ) )
3318, 32eqtr4d 2659 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  Z )  ->  (
( k  e.  Z  |->  B ) `  k
)  =  ( ( j  e.  W  |->  A ) `  ( K  +  k ) ) )
3433ralrimiva 2966 . . . . . . . . . . . . . 14  |-  ( ph  ->  A. k  e.  Z  ( ( k  e.  Z  |->  B ) `  k )  =  ( ( j  e.  W  |->  A ) `  ( K  +  k )
) )
35 nffvmpt1 6199 . . . . . . . . . . . . . . . 16  |-  F/_ k
( ( k  e.  Z  |->  B ) `  n )
3635nfeq1 2778 . . . . . . . . . . . . . . 15  |-  F/ k ( ( k  e.  Z  |->  B ) `  n )  =  ( ( j  e.  W  |->  A ) `  ( K  +  n )
)
37 fveq2 6191 . . . . . . . . . . . . . . . 16  |-  ( k  =  n  ->  (
( k  e.  Z  |->  B ) `  k
)  =  ( ( k  e.  Z  |->  B ) `  n ) )
38 oveq2 6658 . . . . . . . . . . . . . . . . 17  |-  ( k  =  n  ->  ( K  +  k )  =  ( K  +  n ) )
3938fveq2d 6195 . . . . . . . . . . . . . . . 16  |-  ( k  =  n  ->  (
( j  e.  W  |->  A ) `  ( K  +  k )
)  =  ( ( j  e.  W  |->  A ) `  ( K  +  n ) ) )
4037, 39eqeq12d 2637 . . . . . . . . . . . . . . 15  |-  ( k  =  n  ->  (
( ( k  e.  Z  |->  B ) `  k )  =  ( ( j  e.  W  |->  A ) `  ( K  +  k )
)  <->  ( ( k  e.  Z  |->  B ) `
 n )  =  ( ( j  e.  W  |->  A ) `  ( K  +  n
) ) ) )
4136, 40rspc 3303 . . . . . . . . . . . . . 14  |-  ( n  e.  Z  ->  ( A. k  e.  Z  ( ( k  e.  Z  |->  B ) `  k )  =  ( ( j  e.  W  |->  A ) `  ( K  +  k )
)  ->  ( (
k  e.  Z  |->  B ) `  n )  =  ( ( j  e.  W  |->  A ) `
 ( K  +  n ) ) ) )
4234, 41mpan9 486 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  Z )  ->  (
( k  e.  Z  |->  B ) `  n
)  =  ( ( j  e.  W  |->  A ) `  ( K  +  n ) ) )
4342ralrimiva 2966 . . . . . . . . . . . 12  |-  ( ph  ->  A. n  e.  Z  ( ( k  e.  Z  |->  B ) `  n )  =  ( ( j  e.  W  |->  A ) `  ( K  +  n )
) )
4443adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  W )  ->  A. n  e.  Z  ( (
k  e.  Z  |->  B ) `  n )  =  ( ( j  e.  W  |->  A ) `
 ( K  +  n ) ) )
451adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  W )  ->  M  e.  ZZ )
462adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  W )  ->  K  e.  ZZ )
47 simpr 477 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  m  e.  W )  ->  m  e.  W )
4847, 4syl6eleq 2711 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  W )  ->  m  e.  ( ZZ>= `  ( M  +  K ) ) )
49 eluzsub 11717 . . . . . . . . . . . . 13  |-  ( ( M  e.  ZZ  /\  K  e.  ZZ  /\  m  e.  ( ZZ>= `  ( M  +  K ) ) )  ->  ( m  -  K )  e.  (
ZZ>= `  M ) )
5045, 46, 48, 49syl3anc 1326 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  W )  ->  (
m  -  K )  e.  ( ZZ>= `  M
) )
5150, 9syl6eleqr 2712 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  W )  ->  (
m  -  K )  e.  Z )
52 fveq2 6191 . . . . . . . . . . . . 13  |-  ( n  =  ( m  -  K )  ->  (
( k  e.  Z  |->  B ) `  n
)  =  ( ( k  e.  Z  |->  B ) `  ( m  -  K ) ) )
53 oveq2 6658 . . . . . . . . . . . . . 14  |-  ( n  =  ( m  -  K )  ->  ( K  +  n )  =  ( K  +  ( m  -  K
) ) )
5453fveq2d 6195 . . . . . . . . . . . . 13  |-  ( n  =  ( m  -  K )  ->  (
( j  e.  W  |->  A ) `  ( K  +  n )
)  =  ( ( j  e.  W  |->  A ) `  ( K  +  ( m  -  K ) ) ) )
5552, 54eqeq12d 2637 . . . . . . . . . . . 12  |-  ( n  =  ( m  -  K )  ->  (
( ( k  e.  Z  |->  B ) `  n )  =  ( ( j  e.  W  |->  A ) `  ( K  +  n )
)  <->  ( ( k  e.  Z  |->  B ) `
 ( m  -  K ) )  =  ( ( j  e.  W  |->  A ) `  ( K  +  (
m  -  K ) ) ) ) )
5655rspccva 3308 . . . . . . . . . . 11  |-  ( ( A. n  e.  Z  ( ( k  e.  Z  |->  B ) `  n )  =  ( ( j  e.  W  |->  A ) `  ( K  +  n )
)  /\  ( m  -  K )  e.  Z
)  ->  ( (
k  e.  Z  |->  B ) `  ( m  -  K ) )  =  ( ( j  e.  W  |->  A ) `
 ( K  +  ( m  -  K
) ) ) )
5744, 51, 56syl2anc 693 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  W )  ->  (
( k  e.  Z  |->  B ) `  (
m  -  K ) )  =  ( ( j  e.  W  |->  A ) `  ( K  +  ( m  -  K ) ) ) )
58 pncan3 10289 . . . . . . . . . . . 12  |-  ( ( K  e.  CC  /\  m  e.  CC )  ->  ( K  +  ( m  -  K ) )  =  m )
596, 8, 58syl2an 494 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  W )  ->  ( K  +  ( m  -  K ) )  =  m )
6059fveq2d 6195 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  W )  ->  (
( j  e.  W  |->  A ) `  ( K  +  ( m  -  K ) ) )  =  ( ( j  e.  W  |->  A ) `
 m ) )
6114, 57, 603eqtrrd 2661 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  W )  ->  (
( j  e.  W  |->  A ) `  m
)  =  ( ( ( k  e.  Z  |->  B )  shift  K ) `
 m ) )
625, 61sylan2br 493 . . . . . . . 8  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( M  +  K ) ) )  ->  ( ( j  e.  W  |->  A ) `
 m )  =  ( ( ( k  e.  Z  |->  B ) 
shift  K ) `  m
) )
633, 62seqfeq 12826 . . . . . . 7  |-  ( ph  ->  seq ( M  +  K ) (  +  ,  ( j  e.  W  |->  A ) )  =  seq ( M  +  K ) (  +  ,  ( ( k  e.  Z  |->  B )  shift  K )
) )
6463breq1d 4663 . . . . . 6  |-  ( ph  ->  (  seq ( M  +  K ) (  +  ,  ( j  e.  W  |->  A ) )  ~~>  x  <->  seq ( M  +  K )
(  +  ,  ( ( k  e.  Z  |->  B )  shift  K ) )  ~~>  x ) )
6512isershft 14394 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  K  e.  ZZ )  ->  (  seq M (  +  ,  ( k  e.  Z  |->  B ) )  ~~>  x  <->  seq ( M  +  K )
(  +  ,  ( ( k  e.  Z  |->  B )  shift  K ) )  ~~>  x ) )
661, 2, 65syl2anc 693 . . . . . 6  |-  ( ph  ->  (  seq M (  +  ,  ( k  e.  Z  |->  B ) )  ~~>  x  <->  seq ( M  +  K )
(  +  ,  ( ( k  e.  Z  |->  B )  shift  K ) )  ~~>  x ) )
6764, 66bitr4d 271 . . . . 5  |-  ( ph  ->  (  seq ( M  +  K ) (  +  ,  ( j  e.  W  |->  A ) )  ~~>  x  <->  seq M (  +  ,  ( k  e.  Z  |->  B ) )  ~~>  x ) )
6867iotabidv 5872 . . . 4  |-  ( ph  ->  ( iota x  seq ( M  +  K
) (  +  , 
( j  e.  W  |->  A ) )  ~~>  x )  =  ( iota x  seq M (  +  , 
( k  e.  Z  |->  B ) )  ~~>  x ) )
69 df-fv 5896 . . . 4  |-  (  ~~>  `  seq ( M  +  K
) (  +  , 
( j  e.  W  |->  A ) ) )  =  ( iota x  seq ( M  +  K
) (  +  , 
( j  e.  W  |->  A ) )  ~~>  x )
70 df-fv 5896 . . . 4  |-  (  ~~>  `  seq M (  +  , 
( k  e.  Z  |->  B ) ) )  =  ( iota x  seq M (  +  , 
( k  e.  Z  |->  B ) )  ~~>  x )
7168, 69, 703eqtr4g 2681 . . 3  |-  ( ph  ->  (  ~~>  `  seq ( M  +  K )
(  +  ,  ( j  e.  W  |->  A ) ) )  =  (  ~~>  `  seq M (  +  ,  ( k  e.  Z  |->  B ) ) ) )
72 eqidd 2623 . . . 4  |-  ( (
ph  /\  m  e.  W )  ->  (
( j  e.  W  |->  A ) `  m
)  =  ( ( j  e.  W  |->  A ) `  m ) )
73 isumshft.6 . . . . . 6  |-  ( (
ph  /\  j  e.  W )  ->  A  e.  CC )
7473, 30fmptd 6385 . . . . 5  |-  ( ph  ->  ( j  e.  W  |->  A ) : W --> CC )
75 ffvelrn 6357 . . . . 5  |-  ( ( ( j  e.  W  |->  A ) : W --> CC  /\  m  e.  W
)  ->  ( (
j  e.  W  |->  A ) `  m )  e.  CC )
7674, 75sylan 488 . . . 4  |-  ( (
ph  /\  m  e.  W )  ->  (
( j  e.  W  |->  A ) `  m
)  e.  CC )
774, 3, 72, 76isum 14450 . . 3  |-  ( ph  -> 
sum_ m  e.  W  ( ( j  e.  W  |->  A ) `  m )  =  (  ~~>  `
 seq ( M  +  K ) (  +  ,  ( j  e.  W  |->  A ) ) ) )
78 eqidd 2623 . . . 4  |-  ( (
ph  /\  n  e.  Z )  ->  (
( k  e.  Z  |->  B ) `  n
)  =  ( ( k  e.  Z  |->  B ) `  n ) )
7974adantr 481 . . . . . 6  |-  ( (
ph  /\  n  e.  Z )  ->  (
j  e.  W  |->  A ) : W --> CC )
8028ralrimiva 2966 . . . . . . 7  |-  ( ph  ->  A. k  e.  Z  ( K  +  k
)  e.  W )
8138eleq1d 2686 . . . . . . . 8  |-  ( k  =  n  ->  (
( K  +  k )  e.  W  <->  ( K  +  n )  e.  W
) )
8281rspccva 3308 . . . . . . 7  |-  ( ( A. k  e.  Z  ( K  +  k
)  e.  W  /\  n  e.  Z )  ->  ( K  +  n
)  e.  W )
8380, 82sylan 488 . . . . . 6  |-  ( (
ph  /\  n  e.  Z )  ->  ( K  +  n )  e.  W )
84 ffvelrn 6357 . . . . . 6  |-  ( ( ( j  e.  W  |->  A ) : W --> CC  /\  ( K  +  n )  e.  W
)  ->  ( (
j  e.  W  |->  A ) `  ( K  +  n ) )  e.  CC )
8579, 83, 84syl2anc 693 . . . . 5  |-  ( (
ph  /\  n  e.  Z )  ->  (
( j  e.  W  |->  A ) `  ( K  +  n )
)  e.  CC )
8642, 85eqeltrd 2701 . . . 4  |-  ( (
ph  /\  n  e.  Z )  ->  (
( k  e.  Z  |->  B ) `  n
)  e.  CC )
879, 1, 78, 86isum 14450 . . 3  |-  ( ph  -> 
sum_ n  e.  Z  ( ( k  e.  Z  |->  B ) `  n )  =  (  ~~>  `
 seq M (  +  ,  ( k  e.  Z  |->  B ) ) ) )
8871, 77, 873eqtr4d 2666 . 2  |-  ( ph  -> 
sum_ m  e.  W  ( ( j  e.  W  |->  A ) `  m )  =  sum_ n  e.  Z  ( ( k  e.  Z  |->  B ) `  n ) )
89 sumfc 14440 . 2  |-  sum_ m  e.  W  ( (
j  e.  W  |->  A ) `  m )  =  sum_ j  e.  W  A
90 sumfc 14440 . 2  |-  sum_ n  e.  Z  ( (
k  e.  Z  |->  B ) `  n )  =  sum_ k  e.  Z  B
9188, 89, 903eqtr3g 2679 1  |-  ( ph  -> 
sum_ j  e.  W  A  =  sum_ k  e.  Z  B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200   class class class wbr 4653    |-> cmpt 4729    _I cid 5023   iotacio 5849   -->wf 5884   ` cfv 5888  (class class class)co 6650   CCcc 9934    + caddc 9939    - cmin 10266   ZZcz 11377   ZZ>=cuz 11687    seqcseq 12801    shift cshi 13806    ~~> cli 14215   sum_csu 14416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417
This theorem is referenced by:  eftlub  14839  pserdv2  24184  logtayl  24406  binomcxplemnotnn0  38555
  Copyright terms: Public domain W3C validator