MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cats1un Structured version   Visualization version   Unicode version

Theorem cats1un 13475
Description: Express a word with an extra symbol as the union of the word and the new value. (Contributed by Mario Carneiro, 28-Feb-2016.)
Assertion
Ref Expression
cats1un  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  ( A ++  <" B "> )  =  ( A  u.  { <. (
# `  A ) ,  B >. } ) )

Proof of Theorem cats1un
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ccatws1cl 13396 . . . . 5  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  ( A ++  <" B "> )  e. Word  X
)
2 wrdf 13310 . . . . 5  |-  ( ( A ++  <" B "> )  e. Word  X  -> 
( A ++  <" B "> ) : ( 0..^ ( # `  ( A ++  <" B "> ) ) ) --> X )
31, 2syl 17 . . . 4  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  ( A ++  <" B "> ) : ( 0..^ ( # `  ( A ++  <" B "> ) ) ) --> X )
4 ccatws1len 13398 . . . . . . 7  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  ( # `  ( A ++  <" B "> ) )  =  ( ( # `  A
)  +  1 ) )
54oveq2d 6666 . . . . . 6  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  ( 0..^ ( # `  ( A ++  <" B "> ) ) )  =  ( 0..^ ( ( # `  A
)  +  1 ) ) )
6 lencl 13324 . . . . . . . . 9  |-  ( A  e. Word  X  ->  ( # `
 A )  e. 
NN0 )
76adantr 481 . . . . . . . 8  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  ( # `  A
)  e.  NN0 )
8 nn0uz 11722 . . . . . . . 8  |-  NN0  =  ( ZZ>= `  0 )
97, 8syl6eleq 2711 . . . . . . 7  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  ( # `  A
)  e.  ( ZZ>= ` 
0 ) )
10 fzosplitsn 12576 . . . . . . 7  |-  ( (
# `  A )  e.  ( ZZ>= `  0 )  ->  ( 0..^ ( (
# `  A )  +  1 ) )  =  ( ( 0..^ ( # `  A
) )  u.  {
( # `  A ) } ) )
119, 10syl 17 . . . . . 6  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  ( 0..^ ( (
# `  A )  +  1 ) )  =  ( ( 0..^ ( # `  A
) )  u.  {
( # `  A ) } ) )
125, 11eqtrd 2656 . . . . 5  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  ( 0..^ ( # `  ( A ++  <" B "> ) ) )  =  ( ( 0..^ ( # `  A
) )  u.  {
( # `  A ) } ) )
1312feq2d 6031 . . . 4  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  ( ( A ++  <" B "> ) : ( 0..^ (
# `  ( A ++  <" B "> ) ) ) --> X  <-> 
( A ++  <" B "> ) : ( ( 0..^ ( # `  A ) )  u. 
{ ( # `  A
) } ) --> X ) )
143, 13mpbid 222 . . 3  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  ( A ++  <" B "> ) : ( ( 0..^ ( # `  A ) )  u. 
{ ( # `  A
) } ) --> X )
15 ffn 6045 . . 3  |-  ( ( A ++  <" B "> ) : ( ( 0..^ ( # `  A
) )  u.  {
( # `  A ) } ) --> X  -> 
( A ++  <" B "> )  Fn  (
( 0..^ ( # `  A ) )  u. 
{ ( # `  A
) } ) )
1614, 15syl 17 . 2  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  ( A ++  <" B "> )  Fn  (
( 0..^ ( # `  A ) )  u. 
{ ( # `  A
) } ) )
17 wrdf 13310 . . . . 5  |-  ( A  e. Word  X  ->  A : ( 0..^ (
# `  A )
) --> X )
1817adantr 481 . . . 4  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  A : ( 0..^ ( # `  A
) ) --> X )
19 eqid 2622 . . . . . 6  |-  { <. (
# `  A ) ,  B >. }  =  { <. ( # `  A
) ,  B >. }
20 fsng 6404 . . . . . 6  |-  ( ( ( # `  A
)  e.  NN0  /\  B  e.  X )  ->  ( { <. ( # `
 A ) ,  B >. } : {
( # `  A ) } --> { B }  <->  {
<. ( # `  A
) ,  B >. }  =  { <. ( # `
 A ) ,  B >. } ) )
2119, 20mpbiri 248 . . . . 5  |-  ( ( ( # `  A
)  e.  NN0  /\  B  e.  X )  ->  { <. ( # `  A
) ,  B >. } : { ( # `  A ) } --> { B } )
226, 21sylan 488 . . . 4  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  { <. ( # `  A
) ,  B >. } : { ( # `  A ) } --> { B } )
23 fzonel 12483 . . . . . 6  |-  -.  ( # `
 A )  e.  ( 0..^ ( # `  A ) )
2423a1i 11 . . . . 5  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  -.  ( # `  A
)  e.  ( 0..^ ( # `  A
) ) )
25 disjsn 4246 . . . . 5  |-  ( ( ( 0..^ ( # `  A ) )  i^i 
{ ( # `  A
) } )  =  (/) 
<->  -.  ( # `  A
)  e.  ( 0..^ ( # `  A
) ) )
2624, 25sylibr 224 . . . 4  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  ( ( 0..^ (
# `  A )
)  i^i  { ( # `
 A ) } )  =  (/) )
27 fun 6066 . . . 4  |-  ( ( ( A : ( 0..^ ( # `  A
) ) --> X  /\  {
<. ( # `  A
) ,  B >. } : { ( # `  A ) } --> { B } )  /\  (
( 0..^ ( # `  A ) )  i^i 
{ ( # `  A
) } )  =  (/) )  ->  ( A  u.  { <. ( # `
 A ) ,  B >. } ) : ( ( 0..^ (
# `  A )
)  u.  { (
# `  A ) } ) --> ( X  u.  { B }
) )
2818, 22, 26, 27syl21anc 1325 . . 3  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  ( A  u.  { <. ( # `  A
) ,  B >. } ) : ( ( 0..^ ( # `  A
) )  u.  {
( # `  A ) } ) --> ( X  u.  { B }
) )
29 ffn 6045 . . 3  |-  ( ( A  u.  { <. (
# `  A ) ,  B >. } ) : ( ( 0..^ (
# `  A )
)  u.  { (
# `  A ) } ) --> ( X  u.  { B }
)  ->  ( A  u.  { <. ( # `  A
) ,  B >. } )  Fn  ( ( 0..^ ( # `  A
) )  u.  {
( # `  A ) } ) )
3028, 29syl 17 . 2  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  ( A  u.  { <. ( # `  A
) ,  B >. } )  Fn  ( ( 0..^ ( # `  A
) )  u.  {
( # `  A ) } ) )
31 elun 3753 . . 3  |-  ( x  e.  ( ( 0..^ ( # `  A
) )  u.  {
( # `  A ) } )  <->  ( x  e.  ( 0..^ ( # `  A ) )  \/  x  e.  { (
# `  A ) } ) )
32 ccats1val1 13403 . . . . . 6  |-  ( ( A  e. Word  X  /\  B  e.  X  /\  x  e.  ( 0..^ ( # `  A
) ) )  -> 
( ( A ++  <" B "> ) `  x )  =  ( A `  x ) )
33323expa 1265 . . . . 5  |-  ( ( ( A  e. Word  X  /\  B  e.  X
)  /\  x  e.  ( 0..^ ( # `  A
) ) )  -> 
( ( A ++  <" B "> ) `  x )  =  ( A `  x ) )
34 simpr 477 . . . . . . . 8  |-  ( ( ( A  e. Word  X  /\  B  e.  X
)  /\  x  e.  ( 0..^ ( # `  A
) ) )  ->  x  e.  ( 0..^ ( # `  A
) ) )
35 nelne2 2891 . . . . . . . 8  |-  ( ( x  e.  ( 0..^ ( # `  A
) )  /\  -.  ( # `  A )  e.  ( 0..^ (
# `  A )
) )  ->  x  =/=  ( # `  A
) )
3634, 23, 35sylancl 694 . . . . . . 7  |-  ( ( ( A  e. Word  X  /\  B  e.  X
)  /\  x  e.  ( 0..^ ( # `  A
) ) )  ->  x  =/=  ( # `  A
) )
3736necomd 2849 . . . . . 6  |-  ( ( ( A  e. Word  X  /\  B  e.  X
)  /\  x  e.  ( 0..^ ( # `  A
) ) )  -> 
( # `  A )  =/=  x )
38 fvunsn 6445 . . . . . 6  |-  ( (
# `  A )  =/=  x  ->  ( ( A  u.  { <. ( # `
 A ) ,  B >. } ) `  x )  =  ( A `  x ) )
3937, 38syl 17 . . . . 5  |-  ( ( ( A  e. Word  X  /\  B  e.  X
)  /\  x  e.  ( 0..^ ( # `  A
) ) )  -> 
( ( A  u.  {
<. ( # `  A
) ,  B >. } ) `  x )  =  ( A `  x ) )
4033, 39eqtr4d 2659 . . . 4  |-  ( ( ( A  e. Word  X  /\  B  e.  X
)  /\  x  e.  ( 0..^ ( # `  A
) ) )  -> 
( ( A ++  <" B "> ) `  x )  =  ( ( A  u.  { <. ( # `  A
) ,  B >. } ) `  x ) )
41 fvexd 6203 . . . . . . . 8  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  ( # `  A
)  e.  _V )
42 elex 3212 . . . . . . . . 9  |-  ( B  e.  X  ->  B  e.  _V )
4342adantl 482 . . . . . . . 8  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  B  e.  _V )
44 fdm 6051 . . . . . . . . . . 11  |-  ( A : ( 0..^ (
# `  A )
) --> X  ->  dom  A  =  ( 0..^ (
# `  A )
) )
4518, 44syl 17 . . . . . . . . . 10  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  dom  A  =  ( 0..^ ( # `  A
) ) )
4645eleq2d 2687 . . . . . . . . 9  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  ( ( # `  A
)  e.  dom  A  <->  (
# `  A )  e.  ( 0..^ ( # `  A ) ) ) )
4723, 46mtbiri 317 . . . . . . . 8  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  -.  ( # `  A
)  e.  dom  A
)
48 fsnunfv 6453 . . . . . . . 8  |-  ( ( ( # `  A
)  e.  _V  /\  B  e.  _V  /\  -.  ( # `  A )  e.  dom  A )  ->  ( ( A  u.  { <. ( # `
 A ) ,  B >. } ) `  ( # `  A ) )  =  B )
4941, 43, 47, 48syl3anc 1326 . . . . . . 7  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  ( ( A  u.  {
<. ( # `  A
) ,  B >. } ) `  ( # `  A ) )  =  B )
50 simpl 473 . . . . . . . . 9  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  A  e. Word  X )
51 s1cl 13382 . . . . . . . . . 10  |-  ( B  e.  X  ->  <" B ">  e. Word  X )
5251adantl 482 . . . . . . . . 9  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  <" B ">  e. Word  X )
53 s1len 13385 . . . . . . . . . . . 12  |-  ( # `  <" B "> )  =  1
54 1nn 11031 . . . . . . . . . . . 12  |-  1  e.  NN
5553, 54eqeltri 2697 . . . . . . . . . . 11  |-  ( # `  <" B "> )  e.  NN
5655a1i 11 . . . . . . . . . 10  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  ( # `  <" B "> )  e.  NN )
57 lbfzo0 12507 . . . . . . . . . 10  |-  ( 0  e.  ( 0..^ (
# `  <" B "> ) )  <->  ( # `  <" B "> )  e.  NN )
5856, 57sylibr 224 . . . . . . . . 9  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  0  e.  ( 0..^ ( # `  <" B "> )
) )
59 ccatval3 13363 . . . . . . . . 9  |-  ( ( A  e. Word  X  /\  <" B ">  e. Word  X  /\  0  e.  ( 0..^ ( # `  <" B "> ) ) )  -> 
( ( A ++  <" B "> ) `  ( 0  +  (
# `  A )
) )  =  (
<" B "> `  0 ) )
6050, 52, 58, 59syl3anc 1326 . . . . . . . 8  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  ( ( A ++  <" B "> ) `  ( 0  +  (
# `  A )
) )  =  (
<" B "> `  0 ) )
61 s1fv 13390 . . . . . . . . 9  |-  ( B  e.  X  ->  ( <" B "> `  0 )  =  B )
6261adantl 482 . . . . . . . 8  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  ( <" B "> `  0 )  =  B )
6360, 62eqtrd 2656 . . . . . . 7  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  ( ( A ++  <" B "> ) `  ( 0  +  (
# `  A )
) )  =  B )
647nn0cnd 11353 . . . . . . . . 9  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  ( # `  A
)  e.  CC )
6564addid2d 10237 . . . . . . . 8  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  ( 0  +  (
# `  A )
)  =  ( # `  A ) )
6665fveq2d 6195 . . . . . . 7  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  ( ( A ++  <" B "> ) `  ( 0  +  (
# `  A )
) )  =  ( ( A ++  <" B "> ) `  ( # `
 A ) ) )
6749, 63, 663eqtr2rd 2663 . . . . . 6  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  ( ( A ++  <" B "> ) `  ( # `  A
) )  =  ( ( A  u.  { <. ( # `  A
) ,  B >. } ) `  ( # `  A ) ) )
68 elsni 4194 . . . . . . . 8  |-  ( x  e.  { ( # `  A ) }  ->  x  =  ( # `  A
) )
6968fveq2d 6195 . . . . . . 7  |-  ( x  e.  { ( # `  A ) }  ->  ( ( A ++  <" B "> ) `  x
)  =  ( ( A ++  <" B "> ) `  ( # `  A ) ) )
7068fveq2d 6195 . . . . . . 7  |-  ( x  e.  { ( # `  A ) }  ->  ( ( A  u.  { <. ( # `  A
) ,  B >. } ) `  x )  =  ( ( A  u.  { <. ( # `
 A ) ,  B >. } ) `  ( # `  A ) ) )
7169, 70eqeq12d 2637 . . . . . 6  |-  ( x  e.  { ( # `  A ) }  ->  ( ( ( A ++  <" B "> ) `  x )  =  ( ( A  u.  { <. ( # `  A
) ,  B >. } ) `  x )  <-> 
( ( A ++  <" B "> ) `  ( # `  A
) )  =  ( ( A  u.  { <. ( # `  A
) ,  B >. } ) `  ( # `  A ) ) ) )
7267, 71syl5ibrcom 237 . . . . 5  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  ( x  e.  {
( # `  A ) }  ->  ( ( A ++  <" B "> ) `  x )  =  ( ( A  u.  { <. ( # `
 A ) ,  B >. } ) `  x ) ) )
7372imp 445 . . . 4  |-  ( ( ( A  e. Word  X  /\  B  e.  X
)  /\  x  e.  { ( # `  A
) } )  -> 
( ( A ++  <" B "> ) `  x )  =  ( ( A  u.  { <. ( # `  A
) ,  B >. } ) `  x ) )
7440, 73jaodan 826 . . 3  |-  ( ( ( A  e. Word  X  /\  B  e.  X
)  /\  ( x  e.  ( 0..^ ( # `  A ) )  \/  x  e.  { (
# `  A ) } ) )  -> 
( ( A ++  <" B "> ) `  x )  =  ( ( A  u.  { <. ( # `  A
) ,  B >. } ) `  x ) )
7531, 74sylan2b 492 . 2  |-  ( ( ( A  e. Word  X  /\  B  e.  X
)  /\  x  e.  ( ( 0..^ (
# `  A )
)  u.  { (
# `  A ) } ) )  -> 
( ( A ++  <" B "> ) `  x )  =  ( ( A  u.  { <. ( # `  A
) ,  B >. } ) `  x ) )
7616, 30, 75eqfnfvd 6314 1  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  ( A ++  <" B "> )  =  ( A  u.  { <. (
# `  A ) ,  B >. } ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   _Vcvv 3200    u. cun 3572    i^i cin 3573   (/)c0 3915   {csn 4177   <.cop 4183   dom cdm 5114    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937    + caddc 9939   NNcn 11020   NN0cn0 11292   ZZ>=cuz 11687  ..^cfzo 12465   #chash 13117  Word cword 13291   ++ cconcat 13293   <"cs1 13294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302
This theorem is referenced by:  s2prop  13652  s3tpop  13654  s4prop  13655  pgpfaclem1  18480  vdegp1ai  26432  vdegp1bi  26433  wwlksnext  26788
  Copyright terms: Public domain W3C validator