MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkp1lem6 Structured version   Visualization version   Unicode version

Theorem wlkp1lem6 26575
Description: Lemma for wlkp1 26578. (Contributed by AV, 6-Mar-2021.)
Hypotheses
Ref Expression
wlkp1.v  |-  V  =  (Vtx `  G )
wlkp1.i  |-  I  =  (iEdg `  G )
wlkp1.f  |-  ( ph  ->  Fun  I )
wlkp1.a  |-  ( ph  ->  I  e.  Fin )
wlkp1.b  |-  ( ph  ->  B  e.  _V )
wlkp1.c  |-  ( ph  ->  C  e.  V )
wlkp1.d  |-  ( ph  ->  -.  B  e.  dom  I )
wlkp1.w  |-  ( ph  ->  F (Walks `  G
) P )
wlkp1.n  |-  N  =  ( # `  F
)
wlkp1.e  |-  ( ph  ->  E  e.  (Edg `  G ) )
wlkp1.x  |-  ( ph  ->  { ( P `  N ) ,  C }  C_  E )
wlkp1.u  |-  ( ph  ->  (iEdg `  S )  =  ( I  u. 
{ <. B ,  E >. } ) )
wlkp1.h  |-  H  =  ( F  u.  { <. N ,  B >. } )
wlkp1.q  |-  Q  =  ( P  u.  { <. ( N  +  1 ) ,  C >. } )
wlkp1.s  |-  ( ph  ->  (Vtx `  S )  =  V )
Assertion
Ref Expression
wlkp1lem6  |-  ( ph  ->  A. k  e.  ( 0..^ N ) ( ( Q `  k
)  =  ( P `
 k )  /\  ( Q `  ( k  +  1 ) )  =  ( P `  ( k  +  1 ) )  /\  (
(iEdg `  S ) `  ( H `  k
) )  =  ( I `  ( F `
 k ) ) ) )
Distinct variable group:    ph, k
Allowed substitution hints:    B( k)    C( k)    P( k)    Q( k)    S( k)    E( k)    F( k)    G( k)    H( k)    I( k)    N( k)    V( k)

Proof of Theorem wlkp1lem6
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 wlkp1.v . . . 4  |-  V  =  (Vtx `  G )
2 wlkp1.i . . . 4  |-  I  =  (iEdg `  G )
3 wlkp1.f . . . 4  |-  ( ph  ->  Fun  I )
4 wlkp1.a . . . 4  |-  ( ph  ->  I  e.  Fin )
5 wlkp1.b . . . 4  |-  ( ph  ->  B  e.  _V )
6 wlkp1.c . . . 4  |-  ( ph  ->  C  e.  V )
7 wlkp1.d . . . 4  |-  ( ph  ->  -.  B  e.  dom  I )
8 wlkp1.w . . . 4  |-  ( ph  ->  F (Walks `  G
) P )
9 wlkp1.n . . . 4  |-  N  =  ( # `  F
)
10 wlkp1.e . . . 4  |-  ( ph  ->  E  e.  (Edg `  G ) )
11 wlkp1.x . . . 4  |-  ( ph  ->  { ( P `  N ) ,  C }  C_  E )
12 wlkp1.u . . . 4  |-  ( ph  ->  (iEdg `  S )  =  ( I  u. 
{ <. B ,  E >. } ) )
13 wlkp1.h . . . 4  |-  H  =  ( F  u.  { <. N ,  B >. } )
14 wlkp1.q . . . 4  |-  Q  =  ( P  u.  { <. ( N  +  1 ) ,  C >. } )
15 wlkp1.s . . . 4  |-  ( ph  ->  (Vtx `  S )  =  V )
161, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15wlkp1lem5 26574 . . 3  |-  ( ph  ->  A. x  e.  ( 0 ... N ) ( Q `  x
)  =  ( P `
 x ) )
17 elfzofz 12485 . . . . . . 7  |-  ( k  e.  ( 0..^ N )  ->  k  e.  ( 0 ... N
) )
1817adantl 482 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0..^ N ) )  ->  k  e.  ( 0 ... N ) )
19 fveq2 6191 . . . . . . . 8  |-  ( x  =  k  ->  ( Q `  x )  =  ( Q `  k ) )
20 fveq2 6191 . . . . . . . 8  |-  ( x  =  k  ->  ( P `  x )  =  ( P `  k ) )
2119, 20eqeq12d 2637 . . . . . . 7  |-  ( x  =  k  ->  (
( Q `  x
)  =  ( P `
 x )  <->  ( Q `  k )  =  ( P `  k ) ) )
2221rspcv 3305 . . . . . 6  |-  ( k  e.  ( 0 ... N )  ->  ( A. x  e.  (
0 ... N ) ( Q `  x )  =  ( P `  x )  ->  ( Q `  k )  =  ( P `  k ) ) )
2318, 22syl 17 . . . . 5  |-  ( (
ph  /\  k  e.  ( 0..^ N ) )  ->  ( A. x  e.  ( 0 ... N
) ( Q `  x )  =  ( P `  x )  ->  ( Q `  k )  =  ( P `  k ) ) )
2423imp 445 . . . 4  |-  ( ( ( ph  /\  k  e.  ( 0..^ N ) )  /\  A. x  e.  ( 0 ... N
) ( Q `  x )  =  ( P `  x ) )  ->  ( Q `  k )  =  ( P `  k ) )
25 fzofzp1 12565 . . . . . . 7  |-  ( k  e.  ( 0..^ N )  ->  ( k  +  1 )  e.  ( 0 ... N
) )
2625adantl 482 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0..^ N ) )  ->  ( k  +  1 )  e.  ( 0 ... N ) )
27 fveq2 6191 . . . . . . . 8  |-  ( x  =  ( k  +  1 )  ->  ( Q `  x )  =  ( Q `  ( k  +  1 ) ) )
28 fveq2 6191 . . . . . . . 8  |-  ( x  =  ( k  +  1 )  ->  ( P `  x )  =  ( P `  ( k  +  1 ) ) )
2927, 28eqeq12d 2637 . . . . . . 7  |-  ( x  =  ( k  +  1 )  ->  (
( Q `  x
)  =  ( P `
 x )  <->  ( Q `  ( k  +  1 ) )  =  ( P `  ( k  +  1 ) ) ) )
3029rspcv 3305 . . . . . 6  |-  ( ( k  +  1 )  e.  ( 0 ... N )  ->  ( A. x  e.  (
0 ... N ) ( Q `  x )  =  ( P `  x )  ->  ( Q `  ( k  +  1 ) )  =  ( P `  ( k  +  1 ) ) ) )
3126, 30syl 17 . . . . 5  |-  ( (
ph  /\  k  e.  ( 0..^ N ) )  ->  ( A. x  e.  ( 0 ... N
) ( Q `  x )  =  ( P `  x )  ->  ( Q `  ( k  +  1 ) )  =  ( P `  ( k  +  1 ) ) ) )
3231imp 445 . . . 4  |-  ( ( ( ph  /\  k  e.  ( 0..^ N ) )  /\  A. x  e.  ( 0 ... N
) ( Q `  x )  =  ( P `  x ) )  ->  ( Q `  ( k  +  1 ) )  =  ( P `  ( k  +  1 ) ) )
3312adantr 481 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0..^ N ) )  ->  (iEdg `  S
)  =  ( I  u.  { <. B ,  E >. } ) )
3413fveq1i 6192 . . . . . . . 8  |-  ( H `
 k )  =  ( ( F  u.  {
<. N ,  B >. } ) `  k )
35 fzonel 12483 . . . . . . . . . . . . . 14  |-  -.  N  e.  ( 0..^ N )
36 eleq1 2689 . . . . . . . . . . . . . 14  |-  ( N  =  k  ->  ( N  e.  ( 0..^ N )  <->  k  e.  ( 0..^ N ) ) )
3735, 36mtbii 316 . . . . . . . . . . . . 13  |-  ( N  =  k  ->  -.  k  e.  ( 0..^ N ) )
3837a1i 11 . . . . . . . . . . . 12  |-  ( ph  ->  ( N  =  k  ->  -.  k  e.  ( 0..^ N ) ) )
3938con2d 129 . . . . . . . . . . 11  |-  ( ph  ->  ( k  e.  ( 0..^ N )  ->  -.  N  =  k
) )
4039imp 445 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( 0..^ N ) )  ->  -.  N  =  k )
4140neqned 2801 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 0..^ N ) )  ->  N  =/=  k
)
42 fvunsn 6445 . . . . . . . . 9  |-  ( N  =/=  k  ->  (
( F  u.  { <. N ,  B >. } ) `  k )  =  ( F `  k ) )
4341, 42syl 17 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0..^ N ) )  ->  ( ( F  u.  { <. N ,  B >. } ) `  k )  =  ( F `  k ) )
4434, 43syl5eq 2668 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0..^ N ) )  ->  ( H `  k )  =  ( F `  k ) )
4533, 44fveq12d 6197 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0..^ N ) )  ->  ( (iEdg `  S ) `  ( H `  k )
)  =  ( ( I  u.  { <. B ,  E >. } ) `
 ( F `  k ) ) )
469oveq2i 6661 . . . . . . . . . . . . . . . 16  |-  ( 0..^ N )  =  ( 0..^ ( # `  F
) )
4746eleq2i 2693 . . . . . . . . . . . . . . 15  |-  ( k  e.  ( 0..^ N )  <->  k  e.  ( 0..^ ( # `  F
) ) )
482wlkf 26510 . . . . . . . . . . . . . . . . 17  |-  ( F (Walks `  G ) P  ->  F  e. Word  dom  I )
498, 48syl 17 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  F  e. Word  dom  I
)
50 wrdsymbcl 13318 . . . . . . . . . . . . . . . . 17  |-  ( ( F  e. Word  dom  I  /\  k  e.  (
0..^ ( # `  F
) ) )  -> 
( F `  k
)  e.  dom  I
)
5150ex 450 . . . . . . . . . . . . . . . 16  |-  ( F  e. Word  dom  I  ->  ( k  e.  ( 0..^ ( # `  F
) )  ->  ( F `  k )  e.  dom  I ) )
5249, 51syl 17 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( k  e.  ( 0..^ ( # `  F
) )  ->  ( F `  k )  e.  dom  I ) )
5347, 52syl5bi 232 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( k  e.  ( 0..^ N )  -> 
( F `  k
)  e.  dom  I
) )
5453imp 445 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( 0..^ N ) )  ->  ( F `  k )  e.  dom  I )
55 eleq1 2689 . . . . . . . . . . . . 13  |-  ( B  =  ( F `  k )  ->  ( B  e.  dom  I  <->  ( F `  k )  e.  dom  I ) )
5654, 55syl5ibrcom 237 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( 0..^ N ) )  ->  ( B  =  ( F `  k
)  ->  B  e.  dom  I ) )
5756con3d 148 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( 0..^ N ) )  ->  ( -.  B  e.  dom  I  ->  -.  B  =  ( F `  k ) ) )
5857ex 450 . . . . . . . . . 10  |-  ( ph  ->  ( k  e.  ( 0..^ N )  -> 
( -.  B  e. 
dom  I  ->  -.  B  =  ( F `  k ) ) ) )
597, 58mpid 44 . . . . . . . . 9  |-  ( ph  ->  ( k  e.  ( 0..^ N )  ->  -.  B  =  ( F `  k )
) )
6059imp 445 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0..^ N ) )  ->  -.  B  =  ( F `  k ) )
6160neqned 2801 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0..^ N ) )  ->  B  =/=  ( F `  k )
)
62 fvunsn 6445 . . . . . . 7  |-  ( B  =/=  ( F `  k )  ->  (
( I  u.  { <. B ,  E >. } ) `  ( F `
 k ) )  =  ( I `  ( F `  k ) ) )
6361, 62syl 17 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0..^ N ) )  ->  ( ( I  u.  { <. B ,  E >. } ) `  ( F `  k ) )  =  ( I `
 ( F `  k ) ) )
6445, 63eqtrd 2656 . . . . 5  |-  ( (
ph  /\  k  e.  ( 0..^ N ) )  ->  ( (iEdg `  S ) `  ( H `  k )
)  =  ( I `
 ( F `  k ) ) )
6564adantr 481 . . . 4  |-  ( ( ( ph  /\  k  e.  ( 0..^ N ) )  /\  A. x  e.  ( 0 ... N
) ( Q `  x )  =  ( P `  x ) )  ->  ( (iEdg `  S ) `  ( H `  k )
)  =  ( I `
 ( F `  k ) ) )
6624, 32, 653jca 1242 . . 3  |-  ( ( ( ph  /\  k  e.  ( 0..^ N ) )  /\  A. x  e.  ( 0 ... N
) ( Q `  x )  =  ( P `  x ) )  ->  ( ( Q `  k )  =  ( P `  k )  /\  ( Q `  ( k  +  1 ) )  =  ( P `  ( k  +  1 ) )  /\  (
(iEdg `  S ) `  ( H `  k
) )  =  ( I `  ( F `
 k ) ) ) )
6716, 66mpidan 704 . 2  |-  ( (
ph  /\  k  e.  ( 0..^ N ) )  ->  ( ( Q `
 k )  =  ( P `  k
)  /\  ( Q `  ( k  +  1 ) )  =  ( P `  ( k  +  1 ) )  /\  ( (iEdg `  S ) `  ( H `  k )
)  =  ( I `
 ( F `  k ) ) ) )
6867ralrimiva 2966 1  |-  ( ph  ->  A. k  e.  ( 0..^ N ) ( ( Q `  k
)  =  ( P `
 k )  /\  ( Q `  ( k  +  1 ) )  =  ( P `  ( k  +  1 ) )  /\  (
(iEdg `  S ) `  ( H `  k
) )  =  ( I `  ( F `
 k ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   _Vcvv 3200    u. cun 3572    C_ wss 3574   {csn 4177   {cpr 4179   <.cop 4183   class class class wbr 4653   dom cdm 5114   Fun wfun 5882   ` cfv 5888  (class class class)co 6650   Fincfn 7955   0cc0 9936   1c1 9937    + caddc 9939   ...cfz 12326  ..^cfzo 12465   #chash 13117  Word cword 13291  Vtxcvtx 25874  iEdgciedg 25875  Edgcedg 25939  Walkscwlks 26492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-wlks 26495
This theorem is referenced by:  wlkp1lem8  26577
  Copyright terms: Public domain W3C validator