MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fidomndrnglem Structured version   Visualization version   Unicode version

Theorem fidomndrnglem 19306
Description: Lemma for fidomndrng 19307. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypotheses
Ref Expression
fidomndrng.b  |-  B  =  ( Base `  R
)
fidomndrng.z  |-  .0.  =  ( 0g `  R )
fidomndrng.o  |-  .1.  =  ( 1r `  R )
fidomndrng.d  |-  .||  =  (
||r `  R )
fidomndrng.t  |-  .x.  =  ( .r `  R )
fidomndrng.r  |-  ( ph  ->  R  e. Domn )
fidomndrng.x  |-  ( ph  ->  B  e.  Fin )
fidomndrng.a  |-  ( ph  ->  A  e.  ( B 
\  {  .0.  }
) )
fidomndrng.f  |-  F  =  ( x  e.  B  |->  ( x  .x.  A
) )
Assertion
Ref Expression
fidomndrnglem  |-  ( ph  ->  A  .||  .1.  )
Distinct variable groups:    x, A    x, B    x, R    x,  .x.
Allowed substitution hints:    ph( x)    .|| ( x)    .1. ( x)    F( x)    .0. ( x)

Proof of Theorem fidomndrnglem
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 fidomndrng.a . . . 4  |-  ( ph  ->  A  e.  ( B 
\  {  .0.  }
) )
21eldifad 3586 . . 3  |-  ( ph  ->  A  e.  B )
3 eldifsni 4320 . . . . . . . . . . . 12  |-  ( A  e.  ( B  \  {  .0.  } )  ->  A  =/=  .0.  )
41, 3syl 17 . . . . . . . . . . 11  |-  ( ph  ->  A  =/=  .0.  )
54ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  B )  /\  ( F `  y )  =  .0.  )  ->  A  =/=  .0.  )
6 oveq1 6657 . . . . . . . . . . . . . . . . 17  |-  ( x  =  y  ->  (
x  .x.  A )  =  ( y  .x.  A ) )
7 fidomndrng.f . . . . . . . . . . . . . . . . 17  |-  F  =  ( x  e.  B  |->  ( x  .x.  A
) )
8 ovex 6678 . . . . . . . . . . . . . . . . 17  |-  ( y 
.x.  A )  e. 
_V
96, 7, 8fvmpt 6282 . . . . . . . . . . . . . . . 16  |-  ( y  e.  B  ->  ( F `  y )  =  ( y  .x.  A ) )
109adantl 482 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  y  e.  B )  ->  ( F `  y )  =  ( y  .x.  A ) )
1110eqeq1d 2624 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  y  e.  B )  ->  (
( F `  y
)  =  .0.  <->  ( y  .x.  A )  =  .0.  ) )
12 fidomndrng.r . . . . . . . . . . . . . . . 16  |-  ( ph  ->  R  e. Domn )
1312adantr 481 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  y  e.  B )  ->  R  e. Domn )
14 simpr 477 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  y  e.  B )  ->  y  e.  B )
152adantr 481 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  y  e.  B )  ->  A  e.  B )
16 fidomndrng.b . . . . . . . . . . . . . . . 16  |-  B  =  ( Base `  R
)
17 fidomndrng.t . . . . . . . . . . . . . . . 16  |-  .x.  =  ( .r `  R )
18 fidomndrng.z . . . . . . . . . . . . . . . 16  |-  .0.  =  ( 0g `  R )
1916, 17, 18domneq0 19297 . . . . . . . . . . . . . . 15  |-  ( ( R  e. Domn  /\  y  e.  B  /\  A  e.  B )  ->  (
( y  .x.  A
)  =  .0.  <->  ( y  =  .0.  \/  A  =  .0.  ) ) )
2013, 14, 15, 19syl3anc 1326 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  y  e.  B )  ->  (
( y  .x.  A
)  =  .0.  <->  ( y  =  .0.  \/  A  =  .0.  ) ) )
2111, 20bitrd 268 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  e.  B )  ->  (
( F `  y
)  =  .0.  <->  ( y  =  .0.  \/  A  =  .0.  ) ) )
2221biimpa 501 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  B )  /\  ( F `  y )  =  .0.  )  ->  (
y  =  .0.  \/  A  =  .0.  )
)
2322ord 392 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  B )  /\  ( F `  y )  =  .0.  )  ->  ( -.  y  =  .0.  ->  A  =  .0.  )
)
2423necon1ad 2811 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  B )  /\  ( F `  y )  =  .0.  )  ->  ( A  =/=  .0.  ->  y  =  .0.  ) )
255, 24mpd 15 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  B )  /\  ( F `  y )  =  .0.  )  ->  y  =  .0.  )
2625ex 450 . . . . . . . 8  |-  ( (
ph  /\  y  e.  B )  ->  (
( F `  y
)  =  .0.  ->  y  =  .0.  ) )
2726ralrimiva 2966 . . . . . . 7  |-  ( ph  ->  A. y  e.  B  ( ( F `  y )  =  .0. 
->  y  =  .0.  ) )
28 domnring 19296 . . . . . . . . . . 11  |-  ( R  e. Domn  ->  R  e.  Ring )
2912, 28syl 17 . . . . . . . . . 10  |-  ( ph  ->  R  e.  Ring )
3016, 17ringrghm 18605 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  A  e.  B )  ->  (
x  e.  B  |->  ( x  .x.  A ) )  e.  ( R 
GrpHom  R ) )
3129, 2, 30syl2anc 693 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  B  |->  ( x  .x.  A
) )  e.  ( R  GrpHom  R ) )
327, 31syl5eqel 2705 . . . . . . . 8  |-  ( ph  ->  F  e.  ( R 
GrpHom  R ) )
3316, 16, 18, 18ghmf1 17689 . . . . . . . 8  |-  ( F  e.  ( R  GrpHom  R )  ->  ( F : B -1-1-> B  <->  A. y  e.  B  ( ( F `  y )  =  .0. 
->  y  =  .0.  ) ) )
3432, 33syl 17 . . . . . . 7  |-  ( ph  ->  ( F : B -1-1-> B  <->  A. y  e.  B  ( ( F `  y )  =  .0. 
->  y  =  .0.  ) ) )
3527, 34mpbird 247 . . . . . 6  |-  ( ph  ->  F : B -1-1-> B
)
36 fidomndrng.x . . . . . . . 8  |-  ( ph  ->  B  e.  Fin )
37 enrefg 7987 . . . . . . . 8  |-  ( B  e.  Fin  ->  B  ~~  B )
3836, 37syl 17 . . . . . . 7  |-  ( ph  ->  B  ~~  B )
39 f1finf1o 8187 . . . . . . 7  |-  ( ( B  ~~  B  /\  B  e.  Fin )  ->  ( F : B -1-1-> B  <-> 
F : B -1-1-onto-> B ) )
4038, 36, 39syl2anc 693 . . . . . 6  |-  ( ph  ->  ( F : B -1-1-> B  <-> 
F : B -1-1-onto-> B ) )
4135, 40mpbid 222 . . . . 5  |-  ( ph  ->  F : B -1-1-onto-> B )
42 f1ocnv 6149 . . . . 5  |-  ( F : B -1-1-onto-> B  ->  `' F : B -1-1-onto-> B )
43 f1of 6137 . . . . 5  |-  ( `' F : B -1-1-onto-> B  ->  `' F : B --> B )
4441, 42, 433syl 18 . . . 4  |-  ( ph  ->  `' F : B --> B )
45 fidomndrng.o . . . . . 6  |-  .1.  =  ( 1r `  R )
4616, 45ringidcl 18568 . . . . 5  |-  ( R  e.  Ring  ->  .1.  e.  B )
4729, 46syl 17 . . . 4  |-  ( ph  ->  .1.  e.  B )
4844, 47ffvelrnd 6360 . . 3  |-  ( ph  ->  ( `' F `  .1.  )  e.  B
)
49 fidomndrng.d . . . 4  |-  .||  =  (
||r `  R )
5016, 49, 17dvdsrmul 18648 . . 3  |-  ( ( A  e.  B  /\  ( `' F `  .1.  )  e.  B )  ->  A  .||  ( ( `' F `  .1.  )  .x.  A
) )
512, 48, 50syl2anc 693 . 2  |-  ( ph  ->  A  .||  ( ( `' F `  .1.  )  .x.  A ) )
52 oveq1 6657 . . . . 5  |-  ( y  =  ( `' F `  .1.  )  ->  (
y  .x.  A )  =  ( ( `' F `  .1.  )  .x.  A ) )
536cbvmptv 4750 . . . . . 6  |-  ( x  e.  B  |->  ( x 
.x.  A ) )  =  ( y  e.  B  |->  ( y  .x.  A ) )
547, 53eqtri 2644 . . . . 5  |-  F  =  ( y  e.  B  |->  ( y  .x.  A
) )
55 ovex 6678 . . . . 5  |-  ( ( `' F `  .1.  )  .x.  A )  e.  _V
5652, 54, 55fvmpt 6282 . . . 4  |-  ( ( `' F `  .1.  )  e.  B  ->  ( F `
 ( `' F `  .1.  ) )  =  ( ( `' F `  .1.  )  .x.  A
) )
5748, 56syl 17 . . 3  |-  ( ph  ->  ( F `  ( `' F `  .1.  )
)  =  ( ( `' F `  .1.  )  .x.  A ) )
58 f1ocnvfv2 6533 . . . 4  |-  ( ( F : B -1-1-onto-> B  /\  .1.  e.  B )  -> 
( F `  ( `' F `  .1.  )
)  =  .1.  )
5941, 47, 58syl2anc 693 . . 3  |-  ( ph  ->  ( F `  ( `' F `  .1.  )
)  =  .1.  )
6057, 59eqtr3d 2658 . 2  |-  ( ph  ->  ( ( `' F `  .1.  )  .x.  A
)  =  .1.  )
6151, 60breqtrd 4679 1  |-  ( ph  ->  A  .||  .1.  )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912    \ cdif 3571   {csn 4177   class class class wbr 4653    |-> cmpt 4729   `'ccnv 5113   -->wf 5884   -1-1->wf1 5885   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650    ~~ cen 7952   Fincfn 7955   Basecbs 15857   .rcmulr 15942   0gc0g 16100    GrpHom cghm 17657   1rcur 18501   Ringcrg 18547   ||rcdsr 18638  Domncdomn 19280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-ghm 17658  df-mgp 18490  df-ur 18502  df-ring 18549  df-dvdsr 18641  df-nzr 19258  df-domn 19284
This theorem is referenced by:  fidomndrng  19307
  Copyright terms: Public domain W3C validator