MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmsub Structured version   Visualization version   Unicode version

Theorem ghmsub 17668
Description: Linearity of subtraction through a group homomorphism. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Hypotheses
Ref Expression
ghmsub.b  |-  B  =  ( Base `  S
)
ghmsub.m  |-  .-  =  ( -g `  S )
ghmsub.n  |-  N  =  ( -g `  T
)
Assertion
Ref Expression
ghmsub  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  B  /\  V  e.  B )  ->  ( F `  ( U  .-  V ) )  =  ( ( F `  U ) N ( F `  V ) ) )

Proof of Theorem ghmsub
StepHypRef Expression
1 ghmgrp1 17662 . . . . . 6  |-  ( F  e.  ( S  GrpHom  T )  ->  S  e.  Grp )
213ad2ant1 1082 . . . . 5  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  B  /\  V  e.  B )  ->  S  e.  Grp )
3 simp3 1063 . . . . 5  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  B  /\  V  e.  B )  ->  V  e.  B )
4 ghmsub.b . . . . . 6  |-  B  =  ( Base `  S
)
5 eqid 2622 . . . . . 6  |-  ( invg `  S )  =  ( invg `  S )
64, 5grpinvcl 17467 . . . . 5  |-  ( ( S  e.  Grp  /\  V  e.  B )  ->  ( ( invg `  S ) `  V
)  e.  B )
72, 3, 6syl2anc 693 . . . 4  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  B  /\  V  e.  B )  ->  (
( invg `  S ) `  V
)  e.  B )
8 eqid 2622 . . . . 5  |-  ( +g  `  S )  =  ( +g  `  S )
9 eqid 2622 . . . . 5  |-  ( +g  `  T )  =  ( +g  `  T )
104, 8, 9ghmlin 17665 . . . 4  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  B  /\  (
( invg `  S ) `  V
)  e.  B )  ->  ( F `  ( U ( +g  `  S
) ( ( invg `  S ) `
 V ) ) )  =  ( ( F `  U ) ( +g  `  T
) ( F `  ( ( invg `  S ) `  V
) ) ) )
117, 10syld3an3 1371 . . 3  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  B  /\  V  e.  B )  ->  ( F `  ( U
( +g  `  S ) ( ( invg `  S ) `  V
) ) )  =  ( ( F `  U ) ( +g  `  T ) ( F `
 ( ( invg `  S ) `
 V ) ) ) )
12 eqid 2622 . . . . . 6  |-  ( invg `  T )  =  ( invg `  T )
134, 5, 12ghminv 17667 . . . . 5  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  V  e.  B )  ->  ( F `  ( ( invg `  S ) `
 V ) )  =  ( ( invg `  T ) `
 ( F `  V ) ) )
14133adant2 1080 . . . 4  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  B  /\  V  e.  B )  ->  ( F `  ( ( invg `  S ) `
 V ) )  =  ( ( invg `  T ) `
 ( F `  V ) ) )
1514oveq2d 6666 . . 3  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  B  /\  V  e.  B )  ->  (
( F `  U
) ( +g  `  T
) ( F `  ( ( invg `  S ) `  V
) ) )  =  ( ( F `  U ) ( +g  `  T ) ( ( invg `  T
) `  ( F `  V ) ) ) )
1611, 15eqtrd 2656 . 2  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  B  /\  V  e.  B )  ->  ( F `  ( U
( +g  `  S ) ( ( invg `  S ) `  V
) ) )  =  ( ( F `  U ) ( +g  `  T ) ( ( invg `  T
) `  ( F `  V ) ) ) )
17 ghmsub.m . . . . 5  |-  .-  =  ( -g `  S )
184, 8, 5, 17grpsubval 17465 . . . 4  |-  ( ( U  e.  B  /\  V  e.  B )  ->  ( U  .-  V
)  =  ( U ( +g  `  S
) ( ( invg `  S ) `
 V ) ) )
1918fveq2d 6195 . . 3  |-  ( ( U  e.  B  /\  V  e.  B )  ->  ( F `  ( U  .-  V ) )  =  ( F `  ( U ( +g  `  S
) ( ( invg `  S ) `
 V ) ) ) )
20193adant1 1079 . 2  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  B  /\  V  e.  B )  ->  ( F `  ( U  .-  V ) )  =  ( F `  ( U ( +g  `  S
) ( ( invg `  S ) `
 V ) ) ) )
21 eqid 2622 . . . . . 6  |-  ( Base `  T )  =  (
Base `  T )
224, 21ghmf 17664 . . . . 5  |-  ( F  e.  ( S  GrpHom  T )  ->  F : B
--> ( Base `  T
) )
23 ffvelrn 6357 . . . . . 6  |-  ( ( F : B --> ( Base `  T )  /\  U  e.  B )  ->  ( F `  U )  e.  ( Base `  T
) )
24 ffvelrn 6357 . . . . . 6  |-  ( ( F : B --> ( Base `  T )  /\  V  e.  B )  ->  ( F `  V )  e.  ( Base `  T
) )
2523, 24anim12dan 882 . . . . 5  |-  ( ( F : B --> ( Base `  T )  /\  ( U  e.  B  /\  V  e.  B )
)  ->  ( ( F `  U )  e.  ( Base `  T
)  /\  ( F `  V )  e.  (
Base `  T )
) )
2622, 25sylan 488 . . . 4  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  ( U  e.  B  /\  V  e.  B )
)  ->  ( ( F `  U )  e.  ( Base `  T
)  /\  ( F `  V )  e.  (
Base `  T )
) )
27263impb 1260 . . 3  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  B  /\  V  e.  B )  ->  (
( F `  U
)  e.  ( Base `  T )  /\  ( F `  V )  e.  ( Base `  T
) ) )
28 ghmsub.n . . . 4  |-  N  =  ( -g `  T
)
2921, 9, 12, 28grpsubval 17465 . . 3  |-  ( ( ( F `  U
)  e.  ( Base `  T )  /\  ( F `  V )  e.  ( Base `  T
) )  ->  (
( F `  U
) N ( F `
 V ) )  =  ( ( F `
 U ) ( +g  `  T ) ( ( invg `  T ) `  ( F `  V )
) ) )
3027, 29syl 17 . 2  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  B  /\  V  e.  B )  ->  (
( F `  U
) N ( F `
 V ) )  =  ( ( F `
 U ) ( +g  `  T ) ( ( invg `  T ) `  ( F `  V )
) ) )
3116, 20, 303eqtr4d 2666 1  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  B  /\  V  e.  B )  ->  ( F `  ( U  .-  V ) )  =  ( ( F `  U ) N ( F `  V ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   -->wf 5884   ` cfv 5888  (class class class)co 6650   Basecbs 15857   +g cplusg 15941   Grpcgrp 17422   invgcminusg 17423   -gcsg 17424    GrpHom cghm 17657
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-ghm 17658
This theorem is referenced by:  ghmnsgima  17684  ghmnsgpreima  17685  ghmeqker  17687  ghmf1  17689  evl1subd  19706  ghmcnp  21918  nmods  22548  qqhucn  30036
  Copyright terms: Public domain W3C validator