| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hlrelat2 | Structured version Visualization version Unicode version | ||
| Description: A consequence of relative atomicity. (chrelat2i 29224 analog.) (Contributed by NM, 5-Feb-2012.) |
| Ref | Expression |
|---|---|
| hlrelat2.b |
|
| hlrelat2.l |
|
| hlrelat2.a |
|
| Ref | Expression |
|---|---|
| hlrelat2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hllat 34650 |
. . . 4
| |
| 2 | hlrelat2.b |
. . . . 5
| |
| 3 | hlrelat2.l |
. . . . 5
| |
| 4 | eqid 2622 |
. . . . 5
| |
| 5 | eqid 2622 |
. . . . 5
| |
| 6 | 2, 3, 4, 5 | latnlemlt 17084 |
. . . 4
|
| 7 | 1, 6 | syl3an1 1359 |
. . 3
|
| 8 | simp1 1061 |
. . . . 5
| |
| 9 | 2, 5 | latmcl 17052 |
. . . . . 6
|
| 10 | 1, 9 | syl3an1 1359 |
. . . . 5
|
| 11 | simp2 1062 |
. . . . 5
| |
| 12 | eqid 2622 |
. . . . . . 7
| |
| 13 | hlrelat2.a |
. . . . . . 7
| |
| 14 | 2, 3, 4, 12, 13 | hlrelat 34688 |
. . . . . 6
|
| 15 | 14 | ex 450 |
. . . . 5
|
| 16 | 8, 10, 11, 15 | syl3anc 1326 |
. . . 4
|
| 17 | simpl1 1064 |
. . . . . . . . . 10
| |
| 18 | 17, 1 | syl 17 |
. . . . . . . . 9
|
| 19 | 10 | adantr 481 |
. . . . . . . . 9
|
| 20 | 2, 13 | atbase 34576 |
. . . . . . . . . 10
|
| 21 | 20 | adantl 482 |
. . . . . . . . 9
|
| 22 | simpl2 1065 |
. . . . . . . . 9
| |
| 23 | 2, 3, 12 | latjle12 17062 |
. . . . . . . . 9
|
| 24 | 18, 19, 21, 22, 23 | syl13anc 1328 |
. . . . . . . 8
|
| 25 | simpr 477 |
. . . . . . . 8
| |
| 26 | 24, 25 | syl6bir 244 |
. . . . . . 7
|
| 27 | 26 | adantld 483 |
. . . . . 6
|
| 28 | simpl3 1066 |
. . . . . . . . . . 11
| |
| 29 | 2, 3, 5 | latlem12 17078 |
. . . . . . . . . . 11
|
| 30 | 18, 21, 22, 28, 29 | syl13anc 1328 |
. . . . . . . . . 10
|
| 31 | 30 | notbid 308 |
. . . . . . . . 9
|
| 32 | 2, 3, 4, 12 | latnle 17085 |
. . . . . . . . . 10
|
| 33 | 18, 19, 21, 32 | syl3anc 1326 |
. . . . . . . . 9
|
| 34 | 31, 33 | bitrd 268 |
. . . . . . . 8
|
| 35 | 34, 24 | anbi12d 747 |
. . . . . . 7
|
| 36 | pm3.21 464 |
. . . . . . . . . 10
| |
| 37 | orcom 402 |
. . . . . . . . . . 11
| |
| 38 | pm4.55 515 |
. . . . . . . . . . 11
| |
| 39 | imor 428 |
. . . . . . . . . . 11
| |
| 40 | 37, 38, 39 | 3bitr4ri 293 |
. . . . . . . . . 10
|
| 41 | 36, 40 | sylib 208 |
. . . . . . . . 9
|
| 42 | 41 | con2i 134 |
. . . . . . . 8
|
| 43 | 42 | adantrl 752 |
. . . . . . 7
|
| 44 | 35, 43 | syl6bir 244 |
. . . . . 6
|
| 45 | 27, 44 | jcad 555 |
. . . . 5
|
| 46 | 45 | reximdva 3017 |
. . . 4
|
| 47 | 16, 46 | syld 47 |
. . 3
|
| 48 | 7, 47 | sylbid 230 |
. 2
|
| 49 | 2, 3 | lattr 17056 |
. . . . . . . . 9
|
| 50 | 18, 21, 22, 28, 49 | syl13anc 1328 |
. . . . . . . 8
|
| 51 | 50 | exp4b 632 |
. . . . . . 7
|
| 52 | 51 | com34 91 |
. . . . . 6
|
| 53 | 52 | com23 86 |
. . . . 5
|
| 54 | 53 | ralrimdv 2968 |
. . . 4
|
| 55 | iman 440 |
. . . . . 6
| |
| 56 | 55 | ralbii 2980 |
. . . . 5
|
| 57 | ralnex 2992 |
. . . . 5
| |
| 58 | 56, 57 | bitri 264 |
. . . 4
|
| 59 | 54, 58 | syl6ib 241 |
. . 3
|
| 60 | 59 | con2d 129 |
. 2
|
| 61 | 48, 60 | impbid 202 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-preset 16928 df-poset 16946 df-plt 16958 df-lub 16974 df-glb 16975 df-join 16976 df-meet 16977 df-p0 17039 df-lat 17046 df-clat 17108 df-oposet 34463 df-ol 34465 df-oml 34466 df-covers 34553 df-ats 34554 df-atl 34585 df-cvlat 34609 df-hlat 34638 |
| This theorem is referenced by: lhpj1 35308 |
| Copyright terms: Public domain | W3C validator |