HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvmul0or Structured version   Visualization version   Unicode version

Theorem hvmul0or 27882
Description: If a scalar product is zero, one of its factors must be zero. (Contributed by NM, 19-May-2005.) (New usage is discouraged.)
Assertion
Ref Expression
hvmul0or  |-  ( ( A  e.  CC  /\  B  e.  ~H )  ->  ( ( A  .h  B )  =  0h  <->  ( A  =  0  \/  B  =  0h )
) )

Proof of Theorem hvmul0or
StepHypRef Expression
1 df-ne 2795 . . . . 5  |-  ( A  =/=  0  <->  -.  A  =  0 )
2 oveq2 6658 . . . . . . . 8  |-  ( ( A  .h  B )  =  0h  ->  (
( 1  /  A
)  .h  ( A  .h  B ) )  =  ( ( 1  /  A )  .h 
0h ) )
32ad2antlr 763 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  B  e. 
~H )  /\  ( A  .h  B )  =  0h )  /\  A  =/=  0 )  ->  (
( 1  /  A
)  .h  ( A  .h  B ) )  =  ( ( 1  /  A )  .h 
0h ) )
4 recid2 10700 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( ( 1  /  A )  x.  A
)  =  1 )
54oveq1d 6665 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( ( ( 1  /  A )  x.  A )  .h  B
)  =  ( 1  .h  B ) )
65adantlr 751 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  B  e.  ~H )  /\  A  =/=  0
)  ->  ( (
( 1  /  A
)  x.  A )  .h  B )  =  ( 1  .h  B
) )
7 reccl 10692 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( 1  /  A
)  e.  CC )
87adantlr 751 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  B  e.  ~H )  /\  A  =/=  0
)  ->  ( 1  /  A )  e.  CC )
9 simpll 790 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  B  e.  ~H )  /\  A  =/=  0
)  ->  A  e.  CC )
10 simplr 792 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  B  e.  ~H )  /\  A  =/=  0
)  ->  B  e.  ~H )
11 ax-hvmulass 27864 . . . . . . . . . 10  |-  ( ( ( 1  /  A
)  e.  CC  /\  A  e.  CC  /\  B  e.  ~H )  ->  (
( ( 1  /  A )  x.  A
)  .h  B )  =  ( ( 1  /  A )  .h  ( A  .h  B
) ) )
128, 9, 10, 11syl3anc 1326 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  B  e.  ~H )  /\  A  =/=  0
)  ->  ( (
( 1  /  A
)  x.  A )  .h  B )  =  ( ( 1  /  A )  .h  ( A  .h  B )
) )
13 ax-hvmulid 27863 . . . . . . . . . 10  |-  ( B  e.  ~H  ->  (
1  .h  B )  =  B )
1413ad2antlr 763 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  B  e.  ~H )  /\  A  =/=  0
)  ->  ( 1  .h  B )  =  B )
156, 12, 143eqtr3d 2664 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  B  e.  ~H )  /\  A  =/=  0
)  ->  ( (
1  /  A )  .h  ( A  .h  B ) )  =  B )
1615adantlr 751 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  B  e. 
~H )  /\  ( A  .h  B )  =  0h )  /\  A  =/=  0 )  ->  (
( 1  /  A
)  .h  ( A  .h  B ) )  =  B )
17 hvmul0 27881 . . . . . . . . . 10  |-  ( ( 1  /  A )  e.  CC  ->  (
( 1  /  A
)  .h  0h )  =  0h )
187, 17syl 17 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( ( 1  /  A )  .h  0h )  =  0h )
1918adantlr 751 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  B  e.  ~H )  /\  A  =/=  0
)  ->  ( (
1  /  A )  .h  0h )  =  0h )
2019adantlr 751 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  B  e. 
~H )  /\  ( A  .h  B )  =  0h )  /\  A  =/=  0 )  ->  (
( 1  /  A
)  .h  0h )  =  0h )
213, 16, 203eqtr3d 2664 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  B  e. 
~H )  /\  ( A  .h  B )  =  0h )  /\  A  =/=  0 )  ->  B  =  0h )
2221ex 450 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  ~H )  /\  ( A  .h  B
)  =  0h )  ->  ( A  =/=  0  ->  B  =  0h )
)
231, 22syl5bir 233 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  ~H )  /\  ( A  .h  B
)  =  0h )  ->  ( -.  A  =  0  ->  B  =  0h ) )
2423orrd 393 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  ~H )  /\  ( A  .h  B
)  =  0h )  ->  ( A  =  0  \/  B  =  0h ) )
2524ex 450 . 2  |-  ( ( A  e.  CC  /\  B  e.  ~H )  ->  ( ( A  .h  B )  =  0h  ->  ( A  =  0  \/  B  =  0h ) ) )
26 ax-hvmul0 27867 . . . . 5  |-  ( B  e.  ~H  ->  (
0  .h  B )  =  0h )
27 oveq1 6657 . . . . . 6  |-  ( A  =  0  ->  ( A  .h  B )  =  ( 0  .h  B ) )
2827eqeq1d 2624 . . . . 5  |-  ( A  =  0  ->  (
( A  .h  B
)  =  0h  <->  ( 0  .h  B )  =  0h ) )
2926, 28syl5ibrcom 237 . . . 4  |-  ( B  e.  ~H  ->  ( A  =  0  ->  ( A  .h  B )  =  0h ) )
3029adantl 482 . . 3  |-  ( ( A  e.  CC  /\  B  e.  ~H )  ->  ( A  =  0  ->  ( A  .h  B )  =  0h ) )
31 hvmul0 27881 . . . . 5  |-  ( A  e.  CC  ->  ( A  .h  0h )  =  0h )
32 oveq2 6658 . . . . . 6  |-  ( B  =  0h  ->  ( A  .h  B )  =  ( A  .h  0h ) )
3332eqeq1d 2624 . . . . 5  |-  ( B  =  0h  ->  (
( A  .h  B
)  =  0h  <->  ( A  .h  0h )  =  0h ) )
3431, 33syl5ibrcom 237 . . . 4  |-  ( A  e.  CC  ->  ( B  =  0h  ->  ( A  .h  B )  =  0h ) )
3534adantr 481 . . 3  |-  ( ( A  e.  CC  /\  B  e.  ~H )  ->  ( B  =  0h  ->  ( A  .h  B
)  =  0h )
)
3630, 35jaod 395 . 2  |-  ( ( A  e.  CC  /\  B  e.  ~H )  ->  ( ( A  =  0  \/  B  =  0h )  ->  ( A  .h  B )  =  0h ) )
3725, 36impbid 202 1  |-  ( ( A  e.  CC  /\  B  e.  ~H )  ->  ( ( A  .h  B )  =  0h  <->  ( A  =  0  \/  B  =  0h )
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794  (class class class)co 6650   CCcc 9934   0cc0 9936   1c1 9937    x. cmul 9941    / cdiv 10684   ~Hchil 27776    .h csm 27778   0hc0v 27781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-hv0cl 27860  ax-hvmulid 27863  ax-hvmulass 27864  ax-hvmul0 27867
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685
This theorem is referenced by:  hvmulcan  27929  hvmulcan2  27930  nmlnop0iALT  28854
  Copyright terms: Public domain W3C validator