HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvsubsub4 Structured version   Visualization version   Unicode version

Theorem hvsubsub4 27917
Description: Hilbert vector space addition/subtraction law. (Contributed by NM, 2-Apr-2000.) (New usage is discouraged.)
Assertion
Ref Expression
hvsubsub4  |-  ( ( ( A  e.  ~H  /\  B  e.  ~H )  /\  ( C  e.  ~H  /\  D  e.  ~H )
)  ->  ( ( A  -h  B )  -h  ( C  -h  D
) )  =  ( ( A  -h  C
)  -h  ( B  -h  D ) ) )

Proof of Theorem hvsubsub4
StepHypRef Expression
1 oveq1 6657 . . . 4  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  ( A  -h  B )  =  ( if ( A  e.  ~H ,  A ,  0h )  -h  B
) )
21oveq1d 6665 . . 3  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  (
( A  -h  B
)  -h  ( C  -h  D ) )  =  ( ( if ( A  e.  ~H ,  A ,  0h )  -h  B )  -h  ( C  -h  D ) ) )
3 oveq1 6657 . . . 4  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  ( A  -h  C )  =  ( if ( A  e.  ~H ,  A ,  0h )  -h  C
) )
43oveq1d 6665 . . 3  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  (
( A  -h  C
)  -h  ( B  -h  D ) )  =  ( ( if ( A  e.  ~H ,  A ,  0h )  -h  C )  -h  ( B  -h  D ) ) )
52, 4eqeq12d 2637 . 2  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  (
( ( A  -h  B )  -h  ( C  -h  D ) )  =  ( ( A  -h  C )  -h  ( B  -h  D
) )  <->  ( ( if ( A  e.  ~H ,  A ,  0h )  -h  B )  -h  ( C  -h  D ) )  =  ( ( if ( A  e.  ~H ,  A ,  0h )  -h  C )  -h  ( B  -h  D ) ) ) )
6 oveq2 6658 . . . 4  |-  ( B  =  if ( B  e.  ~H ,  B ,  0h )  ->  ( if ( A  e.  ~H ,  A ,  0h )  -h  B )  =  ( if ( A  e. 
~H ,  A ,  0h )  -h  if ( B  e.  ~H ,  B ,  0h )
) )
76oveq1d 6665 . . 3  |-  ( B  =  if ( B  e.  ~H ,  B ,  0h )  ->  (
( if ( A  e.  ~H ,  A ,  0h )  -h  B
)  -h  ( C  -h  D ) )  =  ( ( if ( A  e.  ~H ,  A ,  0h )  -h  if ( B  e. 
~H ,  B ,  0h ) )  -h  ( C  -h  D ) ) )
8 oveq1 6657 . . . 4  |-  ( B  =  if ( B  e.  ~H ,  B ,  0h )  ->  ( B  -h  D )  =  ( if ( B  e.  ~H ,  B ,  0h )  -h  D
) )
98oveq2d 6666 . . 3  |-  ( B  =  if ( B  e.  ~H ,  B ,  0h )  ->  (
( if ( A  e.  ~H ,  A ,  0h )  -h  C
)  -h  ( B  -h  D ) )  =  ( ( if ( A  e.  ~H ,  A ,  0h )  -h  C )  -h  ( if ( B  e.  ~H ,  B ,  0h )  -h  D ) ) )
107, 9eqeq12d 2637 . 2  |-  ( B  =  if ( B  e.  ~H ,  B ,  0h )  ->  (
( ( if ( A  e.  ~H ,  A ,  0h )  -h  B )  -h  ( C  -h  D ) )  =  ( ( if ( A  e.  ~H ,  A ,  0h )  -h  C )  -h  ( B  -h  D ) )  <-> 
( ( if ( A  e.  ~H ,  A ,  0h )  -h  if ( B  e. 
~H ,  B ,  0h ) )  -h  ( C  -h  D ) )  =  ( ( if ( A  e.  ~H ,  A ,  0h )  -h  C )  -h  ( if ( B  e.  ~H ,  B ,  0h )  -h  D ) ) ) )
11 oveq1 6657 . . . 4  |-  ( C  =  if ( C  e.  ~H ,  C ,  0h )  ->  ( C  -h  D )  =  ( if ( C  e.  ~H ,  C ,  0h )  -h  D
) )
1211oveq2d 6666 . . 3  |-  ( C  =  if ( C  e.  ~H ,  C ,  0h )  ->  (
( if ( A  e.  ~H ,  A ,  0h )  -h  if ( B  e.  ~H ,  B ,  0h )
)  -h  ( C  -h  D ) )  =  ( ( if ( A  e.  ~H ,  A ,  0h )  -h  if ( B  e. 
~H ,  B ,  0h ) )  -h  ( if ( C  e.  ~H ,  C ,  0h )  -h  D ) ) )
13 oveq2 6658 . . . 4  |-  ( C  =  if ( C  e.  ~H ,  C ,  0h )  ->  ( if ( A  e.  ~H ,  A ,  0h )  -h  C )  =  ( if ( A  e. 
~H ,  A ,  0h )  -h  if ( C  e.  ~H ,  C ,  0h )
) )
1413oveq1d 6665 . . 3  |-  ( C  =  if ( C  e.  ~H ,  C ,  0h )  ->  (
( if ( A  e.  ~H ,  A ,  0h )  -h  C
)  -h  ( if ( B  e.  ~H ,  B ,  0h )  -h  D ) )  =  ( ( if ( A  e.  ~H ,  A ,  0h )  -h  if ( C  e. 
~H ,  C ,  0h ) )  -h  ( if ( B  e.  ~H ,  B ,  0h )  -h  D ) ) )
1512, 14eqeq12d 2637 . 2  |-  ( C  =  if ( C  e.  ~H ,  C ,  0h )  ->  (
( ( if ( A  e.  ~H ,  A ,  0h )  -h  if ( B  e. 
~H ,  B ,  0h ) )  -h  ( C  -h  D ) )  =  ( ( if ( A  e.  ~H ,  A ,  0h )  -h  C )  -h  ( if ( B  e.  ~H ,  B ,  0h )  -h  D ) )  <->  ( ( if ( A  e.  ~H ,  A ,  0h )  -h  if ( B  e. 
~H ,  B ,  0h ) )  -h  ( if ( C  e.  ~H ,  C ,  0h )  -h  D ) )  =  ( ( if ( A  e.  ~H ,  A ,  0h )  -h  if ( C  e. 
~H ,  C ,  0h ) )  -h  ( if ( B  e.  ~H ,  B ,  0h )  -h  D ) ) ) )
16 oveq2 6658 . . . 4  |-  ( D  =  if ( D  e.  ~H ,  D ,  0h )  ->  ( if ( C  e.  ~H ,  C ,  0h )  -h  D )  =  ( if ( C  e. 
~H ,  C ,  0h )  -h  if ( D  e.  ~H ,  D ,  0h )
) )
1716oveq2d 6666 . . 3  |-  ( D  =  if ( D  e.  ~H ,  D ,  0h )  ->  (
( if ( A  e.  ~H ,  A ,  0h )  -h  if ( B  e.  ~H ,  B ,  0h )
)  -h  ( if ( C  e.  ~H ,  C ,  0h )  -h  D ) )  =  ( ( if ( A  e.  ~H ,  A ,  0h )  -h  if ( B  e. 
~H ,  B ,  0h ) )  -h  ( if ( C  e.  ~H ,  C ,  0h )  -h  if ( D  e. 
~H ,  D ,  0h ) ) ) )
18 oveq2 6658 . . . 4  |-  ( D  =  if ( D  e.  ~H ,  D ,  0h )  ->  ( if ( B  e.  ~H ,  B ,  0h )  -h  D )  =  ( if ( B  e. 
~H ,  B ,  0h )  -h  if ( D  e.  ~H ,  D ,  0h )
) )
1918oveq2d 6666 . . 3  |-  ( D  =  if ( D  e.  ~H ,  D ,  0h )  ->  (
( if ( A  e.  ~H ,  A ,  0h )  -h  if ( C  e.  ~H ,  C ,  0h )
)  -h  ( if ( B  e.  ~H ,  B ,  0h )  -h  D ) )  =  ( ( if ( A  e.  ~H ,  A ,  0h )  -h  if ( C  e. 
~H ,  C ,  0h ) )  -h  ( if ( B  e.  ~H ,  B ,  0h )  -h  if ( D  e. 
~H ,  D ,  0h ) ) ) )
2017, 19eqeq12d 2637 . 2  |-  ( D  =  if ( D  e.  ~H ,  D ,  0h )  ->  (
( ( if ( A  e.  ~H ,  A ,  0h )  -h  if ( B  e. 
~H ,  B ,  0h ) )  -h  ( if ( C  e.  ~H ,  C ,  0h )  -h  D ) )  =  ( ( if ( A  e.  ~H ,  A ,  0h )  -h  if ( C  e. 
~H ,  C ,  0h ) )  -h  ( if ( B  e.  ~H ,  B ,  0h )  -h  D ) )  <->  ( ( if ( A  e.  ~H ,  A ,  0h )  -h  if ( B  e. 
~H ,  B ,  0h ) )  -h  ( if ( C  e.  ~H ,  C ,  0h )  -h  if ( D  e. 
~H ,  D ,  0h ) ) )  =  ( ( if ( A  e.  ~H ,  A ,  0h )  -h  if ( C  e. 
~H ,  C ,  0h ) )  -h  ( if ( B  e.  ~H ,  B ,  0h )  -h  if ( D  e. 
~H ,  D ,  0h ) ) ) ) )
21 ifhvhv0 27879 . . 3  |-  if ( A  e.  ~H ,  A ,  0h )  e.  ~H
22 ifhvhv0 27879 . . 3  |-  if ( B  e.  ~H ,  B ,  0h )  e.  ~H
23 ifhvhv0 27879 . . 3  |-  if ( C  e.  ~H ,  C ,  0h )  e.  ~H
24 ifhvhv0 27879 . . 3  |-  if ( D  e.  ~H ,  D ,  0h )  e.  ~H
2521, 22, 23, 24hvsubsub4i 27916 . 2  |-  ( ( if ( A  e. 
~H ,  A ,  0h )  -h  if ( B  e.  ~H ,  B ,  0h )
)  -h  ( if ( C  e.  ~H ,  C ,  0h )  -h  if ( D  e. 
~H ,  D ,  0h ) ) )  =  ( ( if ( A  e.  ~H ,  A ,  0h )  -h  if ( C  e. 
~H ,  C ,  0h ) )  -h  ( if ( B  e.  ~H ,  B ,  0h )  -h  if ( D  e. 
~H ,  D ,  0h ) ) )
265, 10, 15, 20, 25dedth4h 4142 1  |-  ( ( ( A  e.  ~H  /\  B  e.  ~H )  /\  ( C  e.  ~H  /\  D  e.  ~H )
)  ->  ( ( A  -h  B )  -h  ( C  -h  D
) )  =  ( ( A  -h  C
)  -h  ( B  -h  D ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   ifcif 4086  (class class class)co 6650   ~Hchil 27776   0hc0v 27781    -h cmv 27782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-hfvadd 27857  ax-hvcom 27858  ax-hvass 27859  ax-hv0cl 27860  ax-hfvmul 27862  ax-hvdistr1 27865
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-ltxr 10079  df-sub 10268  df-neg 10269  df-hvsub 27828
This theorem is referenced by:  chscllem2  28497  5oalem3  28515  5oalem5  28517
  Copyright terms: Public domain W3C validator