Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  infxrge0gelb Structured version   Visualization version   Unicode version

Theorem infxrge0gelb 29531
Description: The infimum of a set of nonnegative extended reals is greater than or equal to a lower bound. (Contributed by Thierry Arnoux, 19-Jul-2020.) (Revised by AV, 4-Oct-2020.)
Hypotheses
Ref Expression
infxrge0glb.a  |-  ( ph  ->  A  C_  ( 0 [,] +oo ) )
infxrge0glb.b  |-  ( ph  ->  B  e.  ( 0 [,] +oo ) )
Assertion
Ref Expression
infxrge0gelb  |-  ( ph  ->  ( B  <_ inf ( A ,  ( 0 [,] +oo ) ,  <  )  <->  A. x  e.  A  B  <_  x ) )
Distinct variable groups:    x, A    x, B    ph, x

Proof of Theorem infxrge0gelb
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 infxrge0glb.a . . . 4  |-  ( ph  ->  A  C_  ( 0 [,] +oo ) )
2 infxrge0glb.b . . . 4  |-  ( ph  ->  B  e.  ( 0 [,] +oo ) )
31, 2infxrge0glb 29530 . . 3  |-  ( ph  ->  (inf ( A , 
( 0 [,] +oo ) ,  <  )  < 
B  <->  E. x  e.  A  x  <  B ) )
43notbid 308 . 2  |-  ( ph  ->  ( -. inf ( A ,  ( 0 [,] +oo ) ,  <  )  <  B  <->  -.  E. x  e.  A  x  <  B ) )
5 iccssxr 12256 . . . 4  |-  ( 0 [,] +oo )  C_  RR*
65, 2sseldi 3601 . . 3  |-  ( ph  ->  B  e.  RR* )
7 xrltso 11974 . . . . . . 7  |-  <  Or  RR*
8 soss 5053 . . . . . . 7  |-  ( ( 0 [,] +oo )  C_ 
RR*  ->  (  <  Or  RR* 
->  <  Or  ( 0 [,] +oo ) ) )
95, 7, 8mp2 9 . . . . . 6  |-  <  Or  ( 0 [,] +oo )
109a1i 11 . . . . 5  |-  ( ph  ->  <  Or  ( 0 [,] +oo ) )
11 xrge0infss 29525 . . . . . 6  |-  ( A 
C_  ( 0 [,] +oo )  ->  E. x  e.  ( 0 [,] +oo ) ( A. y  e.  A  -.  y  <  x  /\  A. y  e.  ( 0 [,] +oo ) ( x  < 
y  ->  E. z  e.  A  z  <  y ) ) )
121, 11syl 17 . . . . 5  |-  ( ph  ->  E. x  e.  ( 0 [,] +oo )
( A. y  e.  A  -.  y  < 
x  /\  A. y  e.  ( 0 [,] +oo ) ( x  < 
y  ->  E. z  e.  A  z  <  y ) ) )
1310, 12infcl 8394 . . . 4  |-  ( ph  -> inf ( A ,  ( 0 [,] +oo ) ,  <  )  e.  ( 0 [,] +oo )
)
145, 13sseldi 3601 . . 3  |-  ( ph  -> inf ( A ,  ( 0 [,] +oo ) ,  <  )  e.  RR* )
156, 14xrlenltd 10104 . 2  |-  ( ph  ->  ( B  <_ inf ( A ,  ( 0 [,] +oo ) ,  <  )  <->  -. inf ( A ,  ( 0 [,] +oo ) ,  <  )  <  B
) )
166adantr 481 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  RR* )
171, 5syl6ss 3615 . . . . . 6  |-  ( ph  ->  A  C_  RR* )
1817sselda 3603 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  RR* )
1916, 18xrlenltd 10104 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  ( B  <_  x  <->  -.  x  <  B ) )
2019ralbidva 2985 . . 3  |-  ( ph  ->  ( A. x  e.  A  B  <_  x  <->  A. x  e.  A  -.  x  <  B ) )
21 ralnex 2992 . . 3  |-  ( A. x  e.  A  -.  x  <  B  <->  -.  E. x  e.  A  x  <  B )
2220, 21syl6bb 276 . 2  |-  ( ph  ->  ( A. x  e.  A  B  <_  x  <->  -. 
E. x  e.  A  x  <  B ) )
234, 15, 223bitr4d 300 1  |-  ( ph  ->  ( B  <_ inf ( A ,  ( 0 [,] +oo ) ,  <  )  <->  A. x  e.  A  B  <_  x ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    e. wcel 1990   A.wral 2912   E.wrex 2913    C_ wss 3574   class class class wbr 4653    Or wor 5034  (class class class)co 6650  infcinf 8347   0cc0 9936   +oocpnf 10071   RR*cxr 10073    < clt 10074    <_ cle 10075   [,]cicc 12178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-icc 12182
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator