MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fbasweak Structured version   Visualization version   Unicode version

Theorem fbasweak 21669
Description: A filter base on any set is also a filter base on any larger set. (Contributed by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
fbasweak  |-  ( ( F  e.  ( fBas `  X )  /\  F  C_ 
~P Y  /\  Y  e.  V )  ->  F  e.  ( fBas `  Y
) )

Proof of Theorem fbasweak
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 1062 . 2  |-  ( ( F  e.  ( fBas `  X )  /\  F  C_ 
~P Y  /\  Y  e.  V )  ->  F  C_ 
~P Y )
2 simp1 1061 . . . 4  |-  ( ( F  e.  ( fBas `  X )  /\  F  C_ 
~P Y  /\  Y  e.  V )  ->  F  e.  ( fBas `  X
) )
3 elfvdm 6220 . . . . . 6  |-  ( F  e.  ( fBas `  X
)  ->  X  e.  dom  fBas )
433ad2ant1 1082 . . . . 5  |-  ( ( F  e.  ( fBas `  X )  /\  F  C_ 
~P Y  /\  Y  e.  V )  ->  X  e.  dom  fBas )
5 isfbas 21633 . . . . 5  |-  ( X  e.  dom  fBas  ->  ( F  e.  ( fBas `  X )  <->  ( F  C_ 
~P X  /\  ( F  =/=  (/)  /\  (/)  e/  F  /\  A. x  e.  F  A. y  e.  F  ( F  i^i  ~P (
x  i^i  y )
)  =/=  (/) ) ) ) )
64, 5syl 17 . . . 4  |-  ( ( F  e.  ( fBas `  X )  /\  F  C_ 
~P Y  /\  Y  e.  V )  ->  ( F  e.  ( fBas `  X )  <->  ( F  C_ 
~P X  /\  ( F  =/=  (/)  /\  (/)  e/  F  /\  A. x  e.  F  A. y  e.  F  ( F  i^i  ~P (
x  i^i  y )
)  =/=  (/) ) ) ) )
72, 6mpbid 222 . . 3  |-  ( ( F  e.  ( fBas `  X )  /\  F  C_ 
~P Y  /\  Y  e.  V )  ->  ( F  C_  ~P X  /\  ( F  =/=  (/)  /\  (/)  e/  F  /\  A. x  e.  F  A. y  e.  F  ( F  i^i  ~P (
x  i^i  y )
)  =/=  (/) ) ) )
87simprd 479 . 2  |-  ( ( F  e.  ( fBas `  X )  /\  F  C_ 
~P Y  /\  Y  e.  V )  ->  ( F  =/=  (/)  /\  (/)  e/  F  /\  A. x  e.  F  A. y  e.  F  ( F  i^i  ~P (
x  i^i  y )
)  =/=  (/) ) )
9 isfbas 21633 . . 3  |-  ( Y  e.  V  ->  ( F  e.  ( fBas `  Y )  <->  ( F  C_ 
~P Y  /\  ( F  =/=  (/)  /\  (/)  e/  F  /\  A. x  e.  F  A. y  e.  F  ( F  i^i  ~P (
x  i^i  y )
)  =/=  (/) ) ) ) )
1093ad2ant3 1084 . 2  |-  ( ( F  e.  ( fBas `  X )  /\  F  C_ 
~P Y  /\  Y  e.  V )  ->  ( F  e.  ( fBas `  Y )  <->  ( F  C_ 
~P Y  /\  ( F  =/=  (/)  /\  (/)  e/  F  /\  A. x  e.  F  A. y  e.  F  ( F  i^i  ~P (
x  i^i  y )
)  =/=  (/) ) ) ) )
111, 8, 10mpbir2and 957 1  |-  ( ( F  e.  ( fBas `  X )  /\  F  C_ 
~P Y  /\  Y  e.  V )  ->  F  e.  ( fBas `  Y
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    e. wcel 1990    =/= wne 2794    e/ wnel 2897   A.wral 2912    i^i cin 3573    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   dom cdm 5114   ` cfv 5888   fBascfbas 19734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fv 5896  df-fbas 19743
This theorem is referenced by:  snfbas  21670  fgabs  21683  fgtr  21694  trfg  21695  ssufl  21722  cfiluweak  22099  cfilresi  23093  cmetss  23113  minveclem4a  23201  minveclem4  23203
  Copyright terms: Public domain W3C validator