| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iunmapsn | Structured version Visualization version Unicode version | ||
| Description: The indexed union of set exponentiations to a singleton is equal to the set exponentiation of the indexed union. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| Ref | Expression |
|---|---|
| iunmapsn.x |
|
| iunmapsn.a |
|
| iunmapsn.b |
|
| iunmapsn.c |
|
| Ref | Expression |
|---|---|
| iunmapsn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iunmapsn.x |
. . 3
| |
| 2 | iunmapsn.a |
. . 3
| |
| 3 | iunmapsn.b |
. . 3
| |
| 4 | 1, 2, 3 | iunmapss 39407 |
. 2
|
| 5 | simpr 477 |
. . . . . . . 8
| |
| 6 | 3 | ex 450 |
. . . . . . . . . . . 12
|
| 7 | 1, 6 | ralrimi 2957 |
. . . . . . . . . . 11
|
| 8 | iunexg 7143 |
. . . . . . . . . . 11
| |
| 9 | 2, 7, 8 | syl2anc 693 |
. . . . . . . . . 10
|
| 10 | iunmapsn.c |
. . . . . . . . . 10
| |
| 11 | 9, 10 | mapsnd 39388 |
. . . . . . . . 9
|
| 12 | 11 | adantr 481 |
. . . . . . . 8
|
| 13 | 5, 12 | eleqtrd 2703 |
. . . . . . 7
|
| 14 | abid 2610 |
. . . . . . 7
| |
| 15 | 13, 14 | sylib 208 |
. . . . . 6
|
| 16 | eliun 4524 |
. . . . . . . . . . . 12
| |
| 17 | 16 | biimpi 206 |
. . . . . . . . . . 11
|
| 18 | 17 | 3ad2ant2 1083 |
. . . . . . . . . 10
|
| 19 | nfcv 2764 |
. . . . . . . . . . . . 13
| |
| 20 | nfiu1 4550 |
. . . . . . . . . . . . 13
| |
| 21 | 19, 20 | nfel 2777 |
. . . . . . . . . . . 12
|
| 22 | nfv 1843 |
. . . . . . . . . . . 12
| |
| 23 | 1, 21, 22 | nf3an 1831 |
. . . . . . . . . . 11
|
| 24 | rspe 3003 |
. . . . . . . . . . . . . . . . . 18
| |
| 25 | 24 | ancoms 469 |
. . . . . . . . . . . . . . . . 17
|
| 26 | abid 2610 |
. . . . . . . . . . . . . . . . 17
| |
| 27 | 25, 26 | sylibr 224 |
. . . . . . . . . . . . . . . 16
|
| 28 | 27 | adantll 750 |
. . . . . . . . . . . . . . 15
|
| 29 | 28 | 3adant2 1080 |
. . . . . . . . . . . . . 14
|
| 30 | 10 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
|
| 31 | 3, 30 | mapsnd 39388 |
. . . . . . . . . . . . . . . . 17
|
| 32 | 31 | eqcomd 2628 |
. . . . . . . . . . . . . . . 16
|
| 33 | 32 | 3adant3 1081 |
. . . . . . . . . . . . . . 15
|
| 34 | 33 | 3adant1r 1319 |
. . . . . . . . . . . . . 14
|
| 35 | 29, 34 | eleqtrd 2703 |
. . . . . . . . . . . . 13
|
| 36 | 35 | 3exp 1264 |
. . . . . . . . . . . 12
|
| 37 | 36 | 3adant2 1080 |
. . . . . . . . . . 11
|
| 38 | 23, 37 | reximdai 3012 |
. . . . . . . . . 10
|
| 39 | 18, 38 | mpd 15 |
. . . . . . . . 9
|
| 40 | 39 | 3exp 1264 |
. . . . . . . 8
|
| 41 | 40 | rexlimdv 3030 |
. . . . . . 7
|
| 42 | 41 | adantr 481 |
. . . . . 6
|
| 43 | 15, 42 | mpd 15 |
. . . . 5
|
| 44 | eliun 4524 |
. . . . 5
| |
| 45 | 43, 44 | sylibr 224 |
. . . 4
|
| 46 | 45 | ralrimiva 2966 |
. . 3
|
| 47 | dfss3 3592 |
. . 3
| |
| 48 | 46, 47 | sylibr 224 |
. 2
|
| 49 | 4, 48 | eqssd 3620 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-map 7859 |
| This theorem is referenced by: ovnovollem1 40870 ovnovollem2 40871 |
| Copyright terms: Public domain | W3C validator |