MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latledi Structured version   Visualization version   Unicode version

Theorem latledi 17089
Description: An ortholattice is distributive in one ordering direction. (ledi 28399 analog.) (Contributed by NM, 7-Nov-2011.)
Hypotheses
Ref Expression
latledi.b  |-  B  =  ( Base `  K
)
latledi.l  |-  .<_  =  ( le `  K )
latledi.j  |-  .\/  =  ( join `  K )
latledi.m  |-  ./\  =  ( meet `  K )
Assertion
Ref Expression
latledi  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X  ./\  Y
)  .\/  ( X  ./\ 
Z ) )  .<_  ( X  ./\  ( Y 
.\/  Z ) ) )

Proof of Theorem latledi
StepHypRef Expression
1 latledi.b . . . . 5  |-  B  =  ( Base `  K
)
2 latledi.l . . . . 5  |-  .<_  =  ( le `  K )
3 latledi.m . . . . 5  |-  ./\  =  ( meet `  K )
41, 2, 3latmle1 17076 . . . 4  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  ./\  Y
)  .<_  X )
543adant3r3 1276 . . 3  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  ./\  Y )  .<_  X )
61, 2, 3latmle1 17076 . . . 4  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Z  e.  B )  ->  ( X  ./\  Z
)  .<_  X )
763adant3r2 1275 . . 3  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  ./\  Z )  .<_  X )
81, 3latmcl 17052 . . . . . 6  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  ./\  Y
)  e.  B )
983adant3r3 1276 . . . . 5  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  ./\  Y )  e.  B )
101, 3latmcl 17052 . . . . . 6  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Z  e.  B )  ->  ( X  ./\  Z
)  e.  B )
11103adant3r2 1275 . . . . 5  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  ./\  Z )  e.  B )
12 simpr1 1067 . . . . 5  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  X  e.  B )
139, 11, 123jca 1242 . . . 4  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X  ./\  Y
)  e.  B  /\  ( X  ./\  Z )  e.  B  /\  X  e.  B ) )
14 latledi.j . . . . 5  |-  .\/  =  ( join `  K )
151, 2, 14latjle12 17062 . . . 4  |-  ( ( K  e.  Lat  /\  ( ( X  ./\  Y )  e.  B  /\  ( X  ./\  Z )  e.  B  /\  X  e.  B ) )  -> 
( ( ( X 
./\  Y )  .<_  X  /\  ( X  ./\  Z )  .<_  X )  <->  ( ( X  ./\  Y
)  .\/  ( X  ./\ 
Z ) )  .<_  X ) )
1613, 15syldan 487 . . 3  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( ( X  ./\  Y )  .<_  X  /\  ( X  ./\  Z ) 
.<_  X )  <->  ( ( X  ./\  Y )  .\/  ( X  ./\  Z ) )  .<_  X )
)
175, 7, 16mpbi2and 956 . 2  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X  ./\  Y
)  .\/  ( X  ./\ 
Z ) )  .<_  X )
181, 2, 3latmle2 17077 . . . 4  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  ./\  Y
)  .<_  Y )
19183adant3r3 1276 . . 3  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  ./\  Y )  .<_  Y )
201, 2, 3latmle2 17077 . . . 4  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Z  e.  B )  ->  ( X  ./\  Z
)  .<_  Z )
21203adant3r2 1275 . . 3  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  ./\  Z )  .<_  Z )
22 simpl 473 . . . 4  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  K  e.  Lat )
23 simpr2 1068 . . . 4  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  Y  e.  B )
24 simpr3 1069 . . . 4  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  Z  e.  B )
251, 2, 14latjlej12 17067 . . . 4  |-  ( ( K  e.  Lat  /\  ( ( X  ./\  Y )  e.  B  /\  Y  e.  B )  /\  ( ( X  ./\  Z )  e.  B  /\  Z  e.  B )
)  ->  ( (
( X  ./\  Y
)  .<_  Y  /\  ( X  ./\  Z )  .<_  Z )  ->  (
( X  ./\  Y
)  .\/  ( X  ./\ 
Z ) )  .<_  ( Y  .\/  Z ) ) )
2622, 9, 23, 11, 24, 25syl122anc 1335 . . 3  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( ( X  ./\  Y )  .<_  Y  /\  ( X  ./\  Z ) 
.<_  Z )  ->  (
( X  ./\  Y
)  .\/  ( X  ./\ 
Z ) )  .<_  ( Y  .\/  Z ) ) )
2719, 21, 26mp2and 715 . 2  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X  ./\  Y
)  .\/  ( X  ./\ 
Z ) )  .<_  ( Y  .\/  Z ) )
281, 14latjcl 17051 . . . 4  |-  ( ( K  e.  Lat  /\  ( X  ./\  Y )  e.  B  /\  ( X  ./\  Z )  e.  B )  ->  (
( X  ./\  Y
)  .\/  ( X  ./\ 
Z ) )  e.  B )
2922, 9, 11, 28syl3anc 1326 . . 3  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X  ./\  Y
)  .\/  ( X  ./\ 
Z ) )  e.  B )
301, 14latjcl 17051 . . . 4  |-  ( ( K  e.  Lat  /\  Y  e.  B  /\  Z  e.  B )  ->  ( Y  .\/  Z
)  e.  B )
31303adant3r1 1274 . . 3  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( Y  .\/  Z )  e.  B )
321, 2, 3latlem12 17078 . . 3  |-  ( ( K  e.  Lat  /\  ( ( ( X 
./\  Y )  .\/  ( X  ./\  Z ) )  e.  B  /\  X  e.  B  /\  ( Y  .\/  Z )  e.  B ) )  ->  ( ( ( ( X  ./\  Y
)  .\/  ( X  ./\ 
Z ) )  .<_  X  /\  ( ( X 
./\  Y )  .\/  ( X  ./\  Z ) )  .<_  ( Y  .\/  Z ) )  <->  ( ( X  ./\  Y )  .\/  ( X  ./\  Z ) )  .<_  ( X  ./\  ( Y  .\/  Z
) ) ) )
3322, 29, 12, 31, 32syl13anc 1328 . 2  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( ( ( X 
./\  Y )  .\/  ( X  ./\  Z ) )  .<_  X  /\  ( ( X  ./\  Y )  .\/  ( X 
./\  Z ) ) 
.<_  ( Y  .\/  Z
) )  <->  ( ( X  ./\  Y )  .\/  ( X  ./\  Z ) )  .<_  ( X  ./\  ( Y  .\/  Z
) ) ) )
3417, 27, 33mpbi2and 956 1  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X  ./\  Y
)  .\/  ( X  ./\ 
Z ) )  .<_  ( X  ./\  ( Y 
.\/  Z ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Basecbs 15857   lecple 15948   joincjn 16944   meetcmee 16945   Latclat 17045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-poset 16946  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-lat 17046
This theorem is referenced by:  omlfh1N  34545
  Copyright terms: Public domain W3C validator