| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cmtbr4N | Structured version Visualization version Unicode version | ||
| Description: Alternate definition for the commutes relation. (cmbr4i 28460 analog.) (Contributed by NM, 10-Nov-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| cmtbr4.b |
|
| cmtbr4.l |
|
| cmtbr4.j |
|
| cmtbr4.m |
|
| cmtbr4.o |
|
| cmtbr4.c |
|
| Ref | Expression |
|---|---|
| cmtbr4N |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cmtbr4.b |
. . 3
| |
| 2 | cmtbr4.j |
. . 3
| |
| 3 | cmtbr4.m |
. . 3
| |
| 4 | cmtbr4.o |
. . 3
| |
| 5 | cmtbr4.c |
. . 3
| |
| 6 | 1, 2, 3, 4, 5 | cmtbr3N 34541 |
. 2
|
| 7 | omllat 34529 |
. . . . 5
| |
| 8 | cmtbr4.l |
. . . . . 6
| |
| 9 | 1, 8, 3 | latmle2 17077 |
. . . . 5
|
| 10 | 7, 9 | syl3an1 1359 |
. . . 4
|
| 11 | breq1 4656 |
. . . 4
| |
| 12 | 10, 11 | syl5ibrcom 237 |
. . 3
|
| 13 | 7 | 3ad2ant1 1082 |
. . . . . . . . 9
|
| 14 | simp2 1062 |
. . . . . . . . 9
| |
| 15 | omlop 34528 |
. . . . . . . . . . . 12
| |
| 16 | 15 | 3ad2ant1 1082 |
. . . . . . . . . . 11
|
| 17 | 1, 4 | opoccl 34481 |
. . . . . . . . . . 11
|
| 18 | 16, 14, 17 | syl2anc 693 |
. . . . . . . . . 10
|
| 19 | simp3 1063 |
. . . . . . . . . 10
| |
| 20 | 1, 2 | latjcl 17051 |
. . . . . . . . . 10
|
| 21 | 13, 18, 19, 20 | syl3anc 1326 |
. . . . . . . . 9
|
| 22 | 1, 8, 3 | latmle1 17076 |
. . . . . . . . 9
|
| 23 | 13, 14, 21, 22 | syl3anc 1326 |
. . . . . . . 8
|
| 24 | 23 | anim1i 592 |
. . . . . . 7
|
| 25 | 24 | ex 450 |
. . . . . 6
|
| 26 | 1, 3 | latmcl 17052 |
. . . . . . . 8
|
| 27 | 13, 14, 21, 26 | syl3anc 1326 |
. . . . . . 7
|
| 28 | 1, 8, 3 | latlem12 17078 |
. . . . . . 7
|
| 29 | 13, 27, 14, 19, 28 | syl13anc 1328 |
. . . . . 6
|
| 30 | 25, 29 | sylibd 229 |
. . . . 5
|
| 31 | 1, 8, 2 | latlej2 17061 |
. . . . . . 7
|
| 32 | 13, 18, 19, 31 | syl3anc 1326 |
. . . . . 6
|
| 33 | 1, 8, 3 | latmlem2 17082 |
. . . . . . 7
|
| 34 | 13, 19, 21, 14, 33 | syl13anc 1328 |
. . . . . 6
|
| 35 | 32, 34 | mpd 15 |
. . . . 5
|
| 36 | 30, 35 | jctird 567 |
. . . 4
|
| 37 | 1, 3 | latmcl 17052 |
. . . . . 6
|
| 38 | 7, 37 | syl3an1 1359 |
. . . . 5
|
| 39 | 1, 8 | latasymb 17054 |
. . . . 5
|
| 40 | 13, 27, 38, 39 | syl3anc 1326 |
. . . 4
|
| 41 | 36, 40 | sylibd 229 |
. . 3
|
| 42 | 12, 41 | impbid 202 |
. 2
|
| 43 | 6, 42 | bitrd 268 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-preset 16928 df-poset 16946 df-lub 16974 df-glb 16975 df-join 16976 df-meet 16977 df-lat 17046 df-oposet 34463 df-cmtN 34464 df-ol 34465 df-oml 34466 |
| This theorem is referenced by: lecmtN 34543 |
| Copyright terms: Public domain | W3C validator |