Users' Mathboxes Mathbox for Paul Chapman < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lediv2aALT Structured version   Visualization version   Unicode version

Theorem lediv2aALT 31571
Description: Division of both sides of 'less than or equal to' by a nonnegative number. (Contributed by Paul Chapman, 7-Sep-2007.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
lediv2aALT  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  < 
B )  /\  ( C  e.  RR  /\  0  <_  C ) )  -> 
( A  <_  B  ->  ( C  /  B
)  <_  ( C  /  A ) ) )

Proof of Theorem lediv2aALT
StepHypRef Expression
1 gt0ne0 10493 . . . . . . . 8  |-  ( ( B  e.  RR  /\  0  <  B )  ->  B  =/=  0 )
2 rereccl 10743 . . . . . . . 8  |-  ( ( B  e.  RR  /\  B  =/=  0 )  -> 
( 1  /  B
)  e.  RR )
31, 2syldan 487 . . . . . . 7  |-  ( ( B  e.  RR  /\  0  <  B )  -> 
( 1  /  B
)  e.  RR )
4 gt0ne0 10493 . . . . . . . 8  |-  ( ( A  e.  RR  /\  0  <  A )  ->  A  =/=  0 )
5 rereccl 10743 . . . . . . . 8  |-  ( ( A  e.  RR  /\  A  =/=  0 )  -> 
( 1  /  A
)  e.  RR )
64, 5syldan 487 . . . . . . 7  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( 1  /  A
)  e.  RR )
73, 6anim12i 590 . . . . . 6  |-  ( ( ( B  e.  RR  /\  0  <  B )  /\  ( A  e.  RR  /\  0  < 
A ) )  -> 
( ( 1  /  B )  e.  RR  /\  ( 1  /  A
)  e.  RR ) )
87ancoms 469 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  < 
B ) )  -> 
( ( 1  /  B )  e.  RR  /\  ( 1  /  A
)  e.  RR ) )
983adant3 1081 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  < 
B )  /\  ( C  e.  RR  /\  0  <_  C ) )  -> 
( ( 1  /  B )  e.  RR  /\  ( 1  /  A
)  e.  RR ) )
10 simp3 1063 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  < 
B )  /\  ( C  e.  RR  /\  0  <_  C ) )  -> 
( C  e.  RR  /\  0  <_  C )
)
11 df-3an 1039 . . . 4  |-  ( ( ( 1  /  B
)  e.  RR  /\  ( 1  /  A
)  e.  RR  /\  ( C  e.  RR  /\  0  <_  C )
)  <->  ( ( ( 1  /  B )  e.  RR  /\  (
1  /  A )  e.  RR )  /\  ( C  e.  RR  /\  0  <_  C )
) )
129, 10, 11sylanbrc 698 . . 3  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  < 
B )  /\  ( C  e.  RR  /\  0  <_  C ) )  -> 
( ( 1  /  B )  e.  RR  /\  ( 1  /  A
)  e.  RR  /\  ( C  e.  RR  /\  0  <_  C )
) )
13 lemul2a 10878 . . . 4  |-  ( ( ( ( 1  /  B )  e.  RR  /\  ( 1  /  A
)  e.  RR  /\  ( C  e.  RR  /\  0  <_  C )
)  /\  ( 1  /  B )  <_ 
( 1  /  A
) )  ->  ( C  x.  ( 1  /  B ) )  <_  ( C  x.  ( 1  /  A
) ) )
1413ex 450 . . 3  |-  ( ( ( 1  /  B
)  e.  RR  /\  ( 1  /  A
)  e.  RR  /\  ( C  e.  RR  /\  0  <_  C )
)  ->  ( (
1  /  B )  <_  ( 1  /  A )  ->  ( C  x.  ( 1  /  B ) )  <_  ( C  x.  ( 1  /  A
) ) ) )
1512, 14syl 17 . 2  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  < 
B )  /\  ( C  e.  RR  /\  0  <_  C ) )  -> 
( ( 1  /  B )  <_  (
1  /  A )  ->  ( C  x.  ( 1  /  B
) )  <_  ( C  x.  ( 1  /  A ) ) ) )
16 lerec 10906 . . 3  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  < 
B ) )  -> 
( A  <_  B  <->  ( 1  /  B )  <_  ( 1  /  A ) ) )
17163adant3 1081 . 2  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  < 
B )  /\  ( C  e.  RR  /\  0  <_  C ) )  -> 
( A  <_  B  <->  ( 1  /  B )  <_  ( 1  /  A ) ) )
18 recn 10026 . . . . . . . . 9  |-  ( C  e.  RR  ->  C  e.  CC )
1918adantr 481 . . . . . . . 8  |-  ( ( C  e.  RR  /\  0  <_  C )  ->  C  e.  CC )
20 recn 10026 . . . . . . . . . 10  |-  ( B  e.  RR  ->  B  e.  CC )
2120adantr 481 . . . . . . . . 9  |-  ( ( B  e.  RR  /\  0  <  B )  ->  B  e.  CC )
2221, 1jca 554 . . . . . . . 8  |-  ( ( B  e.  RR  /\  0  <  B )  -> 
( B  e.  CC  /\  B  =/=  0 ) )
2319, 22anim12i 590 . . . . . . 7  |-  ( ( ( C  e.  RR  /\  0  <_  C )  /\  ( B  e.  RR  /\  0  <  B ) )  ->  ( C  e.  CC  /\  ( B  e.  CC  /\  B  =/=  0 ) ) )
24 3anass 1042 . . . . . . 7  |-  ( ( C  e.  CC  /\  B  e.  CC  /\  B  =/=  0 )  <->  ( C  e.  CC  /\  ( B  e.  CC  /\  B  =/=  0 ) ) )
2523, 24sylibr 224 . . . . . 6  |-  ( ( ( C  e.  RR  /\  0  <_  C )  /\  ( B  e.  RR  /\  0  <  B ) )  ->  ( C  e.  CC  /\  B  e.  CC  /\  B  =/=  0 ) )
26 divrec 10701 . . . . . 6  |-  ( ( C  e.  CC  /\  B  e.  CC  /\  B  =/=  0 )  ->  ( C  /  B )  =  ( C  x.  (
1  /  B ) ) )
2725, 26syl 17 . . . . 5  |-  ( ( ( C  e.  RR  /\  0  <_  C )  /\  ( B  e.  RR  /\  0  <  B ) )  ->  ( C  /  B )  =  ( C  x.  ( 1  /  B ) ) )
2827ancoms 469 . . . 4  |-  ( ( ( B  e.  RR  /\  0  <  B )  /\  ( C  e.  RR  /\  0  <_  C ) )  -> 
( C  /  B
)  =  ( C  x.  ( 1  /  B ) ) )
29283adant1 1079 . . 3  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  < 
B )  /\  ( C  e.  RR  /\  0  <_  C ) )  -> 
( C  /  B
)  =  ( C  x.  ( 1  /  B ) ) )
30 recn 10026 . . . . . . . . . 10  |-  ( A  e.  RR  ->  A  e.  CC )
3130adantr 481 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  0  <  A )  ->  A  e.  CC )
3231, 4jca 554 . . . . . . . 8  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( A  e.  CC  /\  A  =/=  0 ) )
3319, 32anim12i 590 . . . . . . 7  |-  ( ( ( C  e.  RR  /\  0  <_  C )  /\  ( A  e.  RR  /\  0  <  A ) )  ->  ( C  e.  CC  /\  ( A  e.  CC  /\  A  =/=  0 ) ) )
34 3anass 1042 . . . . . . 7  |-  ( ( C  e.  CC  /\  A  e.  CC  /\  A  =/=  0 )  <->  ( C  e.  CC  /\  ( A  e.  CC  /\  A  =/=  0 ) ) )
3533, 34sylibr 224 . . . . . 6  |-  ( ( ( C  e.  RR  /\  0  <_  C )  /\  ( A  e.  RR  /\  0  <  A ) )  ->  ( C  e.  CC  /\  A  e.  CC  /\  A  =/=  0 ) )
36 divrec 10701 . . . . . 6  |-  ( ( C  e.  CC  /\  A  e.  CC  /\  A  =/=  0 )  ->  ( C  /  A )  =  ( C  x.  (
1  /  A ) ) )
3735, 36syl 17 . . . . 5  |-  ( ( ( C  e.  RR  /\  0  <_  C )  /\  ( A  e.  RR  /\  0  <  A ) )  ->  ( C  /  A )  =  ( C  x.  ( 1  /  A ) ) )
3837ancoms 469 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( C  e.  RR  /\  0  <_  C ) )  -> 
( C  /  A
)  =  ( C  x.  ( 1  /  A ) ) )
39383adant2 1080 . . 3  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  < 
B )  /\  ( C  e.  RR  /\  0  <_  C ) )  -> 
( C  /  A
)  =  ( C  x.  ( 1  /  A ) ) )
4029, 39breq12d 4666 . 2  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  < 
B )  /\  ( C  e.  RR  /\  0  <_  C ) )  -> 
( ( C  /  B )  <_  ( C  /  A )  <->  ( C  x.  ( 1  /  B
) )  <_  ( C  x.  ( 1  /  A ) ) ) )
4115, 17, 403imtr4d 283 1  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  < 
B )  /\  ( C  e.  RR  /\  0  <_  C ) )  -> 
( A  <_  B  ->  ( C  /  B
)  <_  ( C  /  A ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   class class class wbr 4653  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    x. cmul 9941    < clt 10074    <_ cle 10075    / cdiv 10684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator