| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lfli | Structured version Visualization version Unicode version | ||
| Description: Property of a linear functional. (lnfnli 28899 analog.) (Contributed by NM, 16-Apr-2014.) |
| Ref | Expression |
|---|---|
| lflset.v |
|
| lflset.a |
|
| lflset.d |
|
| lflset.s |
|
| lflset.k |
|
| lflset.p |
|
| lflset.t |
|
| lflset.f |
|
| Ref | Expression |
|---|---|
| lfli |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lflset.v |
. . . . 5
| |
| 2 | lflset.a |
. . . . 5
| |
| 3 | lflset.d |
. . . . 5
| |
| 4 | lflset.s |
. . . . 5
| |
| 5 | lflset.k |
. . . . 5
| |
| 6 | lflset.p |
. . . . 5
| |
| 7 | lflset.t |
. . . . 5
| |
| 8 | lflset.f |
. . . . 5
| |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | islfl 34347 |
. . . 4
|
| 10 | 9 | simplbda 654 |
. . 3
|
| 11 | 10 | 3adant3 1081 |
. 2
|
| 12 | oveq1 6657 |
. . . . . . 7
| |
| 13 | 12 | oveq1d 6665 |
. . . . . 6
|
| 14 | 13 | fveq2d 6195 |
. . . . 5
|
| 15 | oveq1 6657 |
. . . . . 6
| |
| 16 | 15 | oveq1d 6665 |
. . . . 5
|
| 17 | 14, 16 | eqeq12d 2637 |
. . . 4
|
| 18 | oveq2 6658 |
. . . . . . 7
| |
| 19 | 18 | oveq1d 6665 |
. . . . . 6
|
| 20 | 19 | fveq2d 6195 |
. . . . 5
|
| 21 | fveq2 6191 |
. . . . . . 7
| |
| 22 | 21 | oveq2d 6666 |
. . . . . 6
|
| 23 | 22 | oveq1d 6665 |
. . . . 5
|
| 24 | 20, 23 | eqeq12d 2637 |
. . . 4
|
| 25 | oveq2 6658 |
. . . . . 6
| |
| 26 | 25 | fveq2d 6195 |
. . . . 5
|
| 27 | fveq2 6191 |
. . . . . 6
| |
| 28 | 27 | oveq2d 6666 |
. . . . 5
|
| 29 | 26, 28 | eqeq12d 2637 |
. . . 4
|
| 30 | 17, 24, 29 | rspc3v 3325 |
. . 3
|
| 31 | 30 | 3ad2ant3 1084 |
. 2
|
| 32 | 11, 31 | mpd 15 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-map 7859 df-lfl 34345 |
| This theorem is referenced by: lfl0 34352 lfladd 34353 lflsub 34354 lflmul 34355 lflnegcl 34362 lflvscl 34364 lkrlss 34382 hdmapln1 37198 |
| Copyright terms: Public domain | W3C validator |