Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lfli Structured version   Visualization version   Unicode version

Theorem lfli 34348
Description: Property of a linear functional. (lnfnli 28899 analog.) (Contributed by NM, 16-Apr-2014.)
Hypotheses
Ref Expression
lflset.v  |-  V  =  ( Base `  W
)
lflset.a  |-  .+  =  ( +g  `  W )
lflset.d  |-  D  =  (Scalar `  W )
lflset.s  |-  .x.  =  ( .s `  W )
lflset.k  |-  K  =  ( Base `  D
)
lflset.p  |-  .+^  =  ( +g  `  D )
lflset.t  |-  .X.  =  ( .r `  D )
lflset.f  |-  F  =  (LFnl `  W )
Assertion
Ref Expression
lfli  |-  ( ( W  e.  Z  /\  G  e.  F  /\  ( R  e.  K  /\  X  e.  V  /\  Y  e.  V
) )  ->  ( G `  ( ( R  .x.  X )  .+  Y ) )  =  ( ( R  .X.  ( G `  X ) )  .+^  ( G `  Y ) ) )

Proof of Theorem lfli
Dummy variables  r  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lflset.v . . . . 5  |-  V  =  ( Base `  W
)
2 lflset.a . . . . 5  |-  .+  =  ( +g  `  W )
3 lflset.d . . . . 5  |-  D  =  (Scalar `  W )
4 lflset.s . . . . 5  |-  .x.  =  ( .s `  W )
5 lflset.k . . . . 5  |-  K  =  ( Base `  D
)
6 lflset.p . . . . 5  |-  .+^  =  ( +g  `  D )
7 lflset.t . . . . 5  |-  .X.  =  ( .r `  D )
8 lflset.f . . . . 5  |-  F  =  (LFnl `  W )
91, 2, 3, 4, 5, 6, 7, 8islfl 34347 . . . 4  |-  ( W  e.  Z  ->  ( G  e.  F  <->  ( G : V --> K  /\  A. r  e.  K  A. x  e.  V  A. y  e.  V  ( G `  ( (
r  .x.  x )  .+  y ) )  =  ( ( r  .X.  ( G `  x ) )  .+^  ( G `  y ) ) ) ) )
109simplbda 654 . . 3  |-  ( ( W  e.  Z  /\  G  e.  F )  ->  A. r  e.  K  A. x  e.  V  A. y  e.  V  ( G `  ( ( r  .x.  x ) 
.+  y ) )  =  ( ( r 
.X.  ( G `  x ) )  .+^  ( G `  y ) ) )
11103adant3 1081 . 2  |-  ( ( W  e.  Z  /\  G  e.  F  /\  ( R  e.  K  /\  X  e.  V  /\  Y  e.  V
) )  ->  A. r  e.  K  A. x  e.  V  A. y  e.  V  ( G `  ( ( r  .x.  x )  .+  y
) )  =  ( ( r  .X.  ( G `  x )
)  .+^  ( G `  y ) ) )
12 oveq1 6657 . . . . . . 7  |-  ( r  =  R  ->  (
r  .x.  x )  =  ( R  .x.  x ) )
1312oveq1d 6665 . . . . . 6  |-  ( r  =  R  ->  (
( r  .x.  x
)  .+  y )  =  ( ( R 
.x.  x )  .+  y ) )
1413fveq2d 6195 . . . . 5  |-  ( r  =  R  ->  ( G `  ( (
r  .x.  x )  .+  y ) )  =  ( G `  (
( R  .x.  x
)  .+  y )
) )
15 oveq1 6657 . . . . . 6  |-  ( r  =  R  ->  (
r  .X.  ( G `  x ) )  =  ( R  .X.  ( G `  x )
) )
1615oveq1d 6665 . . . . 5  |-  ( r  =  R  ->  (
( r  .X.  ( G `  x )
)  .+^  ( G `  y ) )  =  ( ( R  .X.  ( G `  x ) )  .+^  ( G `  y ) ) )
1714, 16eqeq12d 2637 . . . 4  |-  ( r  =  R  ->  (
( G `  (
( r  .x.  x
)  .+  y )
)  =  ( ( r  .X.  ( G `  x ) )  .+^  ( G `  y ) )  <->  ( G `  ( ( R  .x.  x )  .+  y
) )  =  ( ( R  .X.  ( G `  x )
)  .+^  ( G `  y ) ) ) )
18 oveq2 6658 . . . . . . 7  |-  ( x  =  X  ->  ( R  .x.  x )  =  ( R  .x.  X
) )
1918oveq1d 6665 . . . . . 6  |-  ( x  =  X  ->  (
( R  .x.  x
)  .+  y )  =  ( ( R 
.x.  X )  .+  y ) )
2019fveq2d 6195 . . . . 5  |-  ( x  =  X  ->  ( G `  ( ( R  .x.  x )  .+  y ) )  =  ( G `  (
( R  .x.  X
)  .+  y )
) )
21 fveq2 6191 . . . . . . 7  |-  ( x  =  X  ->  ( G `  x )  =  ( G `  X ) )
2221oveq2d 6666 . . . . . 6  |-  ( x  =  X  ->  ( R  .X.  ( G `  x ) )  =  ( R  .X.  ( G `  X )
) )
2322oveq1d 6665 . . . . 5  |-  ( x  =  X  ->  (
( R  .X.  ( G `  x )
)  .+^  ( G `  y ) )  =  ( ( R  .X.  ( G `  X ) )  .+^  ( G `  y ) ) )
2420, 23eqeq12d 2637 . . . 4  |-  ( x  =  X  ->  (
( G `  (
( R  .x.  x
)  .+  y )
)  =  ( ( R  .X.  ( G `  x ) )  .+^  ( G `  y ) )  <->  ( G `  ( ( R  .x.  X )  .+  y
) )  =  ( ( R  .X.  ( G `  X )
)  .+^  ( G `  y ) ) ) )
25 oveq2 6658 . . . . . 6  |-  ( y  =  Y  ->  (
( R  .x.  X
)  .+  y )  =  ( ( R 
.x.  X )  .+  Y ) )
2625fveq2d 6195 . . . . 5  |-  ( y  =  Y  ->  ( G `  ( ( R  .x.  X )  .+  y ) )  =  ( G `  (
( R  .x.  X
)  .+  Y )
) )
27 fveq2 6191 . . . . . 6  |-  ( y  =  Y  ->  ( G `  y )  =  ( G `  Y ) )
2827oveq2d 6666 . . . . 5  |-  ( y  =  Y  ->  (
( R  .X.  ( G `  X )
)  .+^  ( G `  y ) )  =  ( ( R  .X.  ( G `  X ) )  .+^  ( G `  Y ) ) )
2926, 28eqeq12d 2637 . . . 4  |-  ( y  =  Y  ->  (
( G `  (
( R  .x.  X
)  .+  y )
)  =  ( ( R  .X.  ( G `  X ) )  .+^  ( G `  y ) )  <->  ( G `  ( ( R  .x.  X )  .+  Y
) )  =  ( ( R  .X.  ( G `  X )
)  .+^  ( G `  Y ) ) ) )
3017, 24, 29rspc3v 3325 . . 3  |-  ( ( R  e.  K  /\  X  e.  V  /\  Y  e.  V )  ->  ( A. r  e.  K  A. x  e.  V  A. y  e.  V  ( G `  ( ( r  .x.  x )  .+  y
) )  =  ( ( r  .X.  ( G `  x )
)  .+^  ( G `  y ) )  -> 
( G `  (
( R  .x.  X
)  .+  Y )
)  =  ( ( R  .X.  ( G `  X ) )  .+^  ( G `  Y ) ) ) )
31303ad2ant3 1084 . 2  |-  ( ( W  e.  Z  /\  G  e.  F  /\  ( R  e.  K  /\  X  e.  V  /\  Y  e.  V
) )  ->  ( A. r  e.  K  A. x  e.  V  A. y  e.  V  ( G `  ( ( r  .x.  x ) 
.+  y ) )  =  ( ( r 
.X.  ( G `  x ) )  .+^  ( G `  y ) )  ->  ( G `  ( ( R  .x.  X )  .+  Y
) )  =  ( ( R  .X.  ( G `  X )
)  .+^  ( G `  Y ) ) ) )
3211, 31mpd 15 1  |-  ( ( W  e.  Z  /\  G  e.  F  /\  ( R  e.  K  /\  X  e.  V  /\  Y  e.  V
) )  ->  ( G `  ( ( R  .x.  X )  .+  Y ) )  =  ( ( R  .X.  ( G `  X ) )  .+^  ( G `  Y ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   -->wf 5884   ` cfv 5888  (class class class)co 6650   Basecbs 15857   +g cplusg 15941   .rcmulr 15942  Scalarcsca 15944   .scvsca 15945  LFnlclfn 34344
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-lfl 34345
This theorem is referenced by:  lfl0  34352  lfladd  34353  lflsub  34354  lflmul  34355  lflnegcl  34362  lflvscl  34364  lkrlss  34382  hdmapln1  37198
  Copyright terms: Public domain W3C validator