Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lflnegcl Structured version   Visualization version   Unicode version

Theorem lflnegcl 34362
Description: Closure of the negative of a functional. (This is specialized for the purpose of proving ldualgrp 34433, and we do not define a general operation here.) (Contributed by NM, 22-Oct-2014.)
Hypotheses
Ref Expression
lflnegcl.v  |-  V  =  ( Base `  W
)
lflnegcl.r  |-  R  =  (Scalar `  W )
lflnegcl.i  |-  I  =  ( invg `  R )
lflnegcl.n  |-  N  =  ( x  e.  V  |->  ( I `  ( G `  x )
) )
lflnegcl.f  |-  F  =  (LFnl `  W )
lflnegcl.w  |-  ( ph  ->  W  e.  LMod )
lflnegcl.g  |-  ( ph  ->  G  e.  F )
Assertion
Ref Expression
lflnegcl  |-  ( ph  ->  N  e.  F )
Distinct variable groups:    x, G    x, I    x, R    x, V    x, W    ph, x
Allowed substitution hints:    F( x)    N( x)

Proof of Theorem lflnegcl
Dummy variables  y 
k  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lflnegcl.w . . . . . . 7  |-  ( ph  ->  W  e.  LMod )
2 lflnegcl.r . . . . . . . 8  |-  R  =  (Scalar `  W )
32lmodring 18871 . . . . . . 7  |-  ( W  e.  LMod  ->  R  e. 
Ring )
41, 3syl 17 . . . . . 6  |-  ( ph  ->  R  e.  Ring )
5 ringgrp 18552 . . . . . 6  |-  ( R  e.  Ring  ->  R  e. 
Grp )
64, 5syl 17 . . . . 5  |-  ( ph  ->  R  e.  Grp )
76adantr 481 . . . 4  |-  ( (
ph  /\  x  e.  V )  ->  R  e.  Grp )
81adantr 481 . . . . 5  |-  ( (
ph  /\  x  e.  V )  ->  W  e.  LMod )
9 lflnegcl.g . . . . . 6  |-  ( ph  ->  G  e.  F )
109adantr 481 . . . . 5  |-  ( (
ph  /\  x  e.  V )  ->  G  e.  F )
11 simpr 477 . . . . 5  |-  ( (
ph  /\  x  e.  V )  ->  x  e.  V )
12 eqid 2622 . . . . . 6  |-  ( Base `  R )  =  (
Base `  R )
13 lflnegcl.v . . . . . 6  |-  V  =  ( Base `  W
)
14 lflnegcl.f . . . . . 6  |-  F  =  (LFnl `  W )
152, 12, 13, 14lflcl 34351 . . . . 5  |-  ( ( W  e.  LMod  /\  G  e.  F  /\  x  e.  V )  ->  ( G `  x )  e.  ( Base `  R
) )
168, 10, 11, 15syl3anc 1326 . . . 4  |-  ( (
ph  /\  x  e.  V )  ->  ( G `  x )  e.  ( Base `  R
) )
17 lflnegcl.i . . . . 5  |-  I  =  ( invg `  R )
1812, 17grpinvcl 17467 . . . 4  |-  ( ( R  e.  Grp  /\  ( G `  x )  e.  ( Base `  R
) )  ->  (
I `  ( G `  x ) )  e.  ( Base `  R
) )
197, 16, 18syl2anc 693 . . 3  |-  ( (
ph  /\  x  e.  V )  ->  (
I `  ( G `  x ) )  e.  ( Base `  R
) )
20 lflnegcl.n . . 3  |-  N  =  ( x  e.  V  |->  ( I `  ( G `  x )
) )
2119, 20fmptd 6385 . 2  |-  ( ph  ->  N : V --> ( Base `  R ) )
22 ringabl 18580 . . . . . . . 8  |-  ( R  e.  Ring  ->  R  e. 
Abel )
234, 22syl 17 . . . . . . 7  |-  ( ph  ->  R  e.  Abel )
2423adantr 481 . . . . . 6  |-  ( (
ph  /\  ( k  e.  ( Base `  R
)  /\  y  e.  V  /\  z  e.  V
) )  ->  R  e.  Abel )
254adantr 481 . . . . . . 7  |-  ( (
ph  /\  ( k  e.  ( Base `  R
)  /\  y  e.  V  /\  z  e.  V
) )  ->  R  e.  Ring )
26 simpr1 1067 . . . . . . 7  |-  ( (
ph  /\  ( k  e.  ( Base `  R
)  /\  y  e.  V  /\  z  e.  V
) )  ->  k  e.  ( Base `  R
) )
271adantr 481 . . . . . . . 8  |-  ( (
ph  /\  ( k  e.  ( Base `  R
)  /\  y  e.  V  /\  z  e.  V
) )  ->  W  e.  LMod )
289adantr 481 . . . . . . . 8  |-  ( (
ph  /\  ( k  e.  ( Base `  R
)  /\  y  e.  V  /\  z  e.  V
) )  ->  G  e.  F )
29 simpr2 1068 . . . . . . . 8  |-  ( (
ph  /\  ( k  e.  ( Base `  R
)  /\  y  e.  V  /\  z  e.  V
) )  ->  y  e.  V )
302, 12, 13, 14lflcl 34351 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  G  e.  F  /\  y  e.  V )  ->  ( G `  y )  e.  ( Base `  R
) )
3127, 28, 29, 30syl3anc 1326 . . . . . . 7  |-  ( (
ph  /\  ( k  e.  ( Base `  R
)  /\  y  e.  V  /\  z  e.  V
) )  ->  ( G `  y )  e.  ( Base `  R
) )
32 eqid 2622 . . . . . . . 8  |-  ( .r
`  R )  =  ( .r `  R
)
3312, 32ringcl 18561 . . . . . . 7  |-  ( ( R  e.  Ring  /\  k  e.  ( Base `  R
)  /\  ( G `  y )  e.  (
Base `  R )
)  ->  ( k
( .r `  R
) ( G `  y ) )  e.  ( Base `  R
) )
3425, 26, 31, 33syl3anc 1326 . . . . . 6  |-  ( (
ph  /\  ( k  e.  ( Base `  R
)  /\  y  e.  V  /\  z  e.  V
) )  ->  (
k ( .r `  R ) ( G `
 y ) )  e.  ( Base `  R
) )
35 simpr3 1069 . . . . . . 7  |-  ( (
ph  /\  ( k  e.  ( Base `  R
)  /\  y  e.  V  /\  z  e.  V
) )  ->  z  e.  V )
362, 12, 13, 14lflcl 34351 . . . . . . 7  |-  ( ( W  e.  LMod  /\  G  e.  F  /\  z  e.  V )  ->  ( G `  z )  e.  ( Base `  R
) )
3727, 28, 35, 36syl3anc 1326 . . . . . 6  |-  ( (
ph  /\  ( k  e.  ( Base `  R
)  /\  y  e.  V  /\  z  e.  V
) )  ->  ( G `  z )  e.  ( Base `  R
) )
38 eqid 2622 . . . . . . 7  |-  ( +g  `  R )  =  ( +g  `  R )
3912, 38, 17ablinvadd 18215 . . . . . 6  |-  ( ( R  e.  Abel  /\  (
k ( .r `  R ) ( G `
 y ) )  e.  ( Base `  R
)  /\  ( G `  z )  e.  (
Base `  R )
)  ->  ( I `  ( ( k ( .r `  R ) ( G `  y
) ) ( +g  `  R ) ( G `
 z ) ) )  =  ( ( I `  ( k ( .r `  R
) ( G `  y ) ) ) ( +g  `  R
) ( I `  ( G `  z ) ) ) )
4024, 34, 37, 39syl3anc 1326 . . . . 5  |-  ( (
ph  /\  ( k  e.  ( Base `  R
)  /\  y  e.  V  /\  z  e.  V
) )  ->  (
I `  ( (
k ( .r `  R ) ( G `
 y ) ) ( +g  `  R
) ( G `  z ) ) )  =  ( ( I `
 ( k ( .r `  R ) ( G `  y
) ) ) ( +g  `  R ) ( I `  ( G `  z )
) ) )
41 eqid 2622 . . . . . . . 8  |-  ( +g  `  W )  =  ( +g  `  W )
42 eqid 2622 . . . . . . . 8  |-  ( .s
`  W )  =  ( .s `  W
)
4313, 41, 2, 42, 12, 38, 32, 14lfli 34348 . . . . . . 7  |-  ( ( W  e.  LMod  /\  G  e.  F  /\  (
k  e.  ( Base `  R )  /\  y  e.  V  /\  z  e.  V ) )  -> 
( G `  (
( k ( .s
`  W ) y ) ( +g  `  W
) z ) )  =  ( ( k ( .r `  R
) ( G `  y ) ) ( +g  `  R ) ( G `  z
) ) )
4427, 28, 26, 29, 35, 43syl113anc 1338 . . . . . 6  |-  ( (
ph  /\  ( k  e.  ( Base `  R
)  /\  y  e.  V  /\  z  e.  V
) )  ->  ( G `  ( (
k ( .s `  W ) y ) ( +g  `  W
) z ) )  =  ( ( k ( .r `  R
) ( G `  y ) ) ( +g  `  R ) ( G `  z
) ) )
4544fveq2d 6195 . . . . 5  |-  ( (
ph  /\  ( k  e.  ( Base `  R
)  /\  y  e.  V  /\  z  e.  V
) )  ->  (
I `  ( G `  ( ( k ( .s `  W ) y ) ( +g  `  W ) z ) ) )  =  ( I `  ( ( k ( .r `  R ) ( G `
 y ) ) ( +g  `  R
) ( G `  z ) ) ) )
4612, 32, 17, 25, 26, 31ringmneg2 18597 . . . . . 6  |-  ( (
ph  /\  ( k  e.  ( Base `  R
)  /\  y  e.  V  /\  z  e.  V
) )  ->  (
k ( .r `  R ) ( I `
 ( G `  y ) ) )  =  ( I `  ( k ( .r
`  R ) ( G `  y ) ) ) )
4746oveq1d 6665 . . . . 5  |-  ( (
ph  /\  ( k  e.  ( Base `  R
)  /\  y  e.  V  /\  z  e.  V
) )  ->  (
( k ( .r
`  R ) ( I `  ( G `
 y ) ) ) ( +g  `  R
) ( I `  ( G `  z ) ) )  =  ( ( I `  (
k ( .r `  R ) ( G `
 y ) ) ) ( +g  `  R
) ( I `  ( G `  z ) ) ) )
4840, 45, 473eqtr4d 2666 . . . 4  |-  ( (
ph  /\  ( k  e.  ( Base `  R
)  /\  y  e.  V  /\  z  e.  V
) )  ->  (
I `  ( G `  ( ( k ( .s `  W ) y ) ( +g  `  W ) z ) ) )  =  ( ( k ( .r
`  R ) ( I `  ( G `
 y ) ) ) ( +g  `  R
) ( I `  ( G `  z ) ) ) )
4913, 2, 42, 12lmodvscl 18880 . . . . . . 7  |-  ( ( W  e.  LMod  /\  k  e.  ( Base `  R
)  /\  y  e.  V )  ->  (
k ( .s `  W ) y )  e.  V )
5027, 26, 29, 49syl3anc 1326 . . . . . 6  |-  ( (
ph  /\  ( k  e.  ( Base `  R
)  /\  y  e.  V  /\  z  e.  V
) )  ->  (
k ( .s `  W ) y )  e.  V )
5113, 41lmodvacl 18877 . . . . . 6  |-  ( ( W  e.  LMod  /\  (
k ( .s `  W ) y )  e.  V  /\  z  e.  V )  ->  (
( k ( .s
`  W ) y ) ( +g  `  W
) z )  e.  V )
5227, 50, 35, 51syl3anc 1326 . . . . 5  |-  ( (
ph  /\  ( k  e.  ( Base `  R
)  /\  y  e.  V  /\  z  e.  V
) )  ->  (
( k ( .s
`  W ) y ) ( +g  `  W
) z )  e.  V )
53 fveq2 6191 . . . . . . 7  |-  ( x  =  ( ( k ( .s `  W
) y ) ( +g  `  W ) z )  ->  ( G `  x )  =  ( G `  ( ( k ( .s `  W ) y ) ( +g  `  W ) z ) ) )
5453fveq2d 6195 . . . . . 6  |-  ( x  =  ( ( k ( .s `  W
) y ) ( +g  `  W ) z )  ->  (
I `  ( G `  x ) )  =  ( I `  ( G `  ( (
k ( .s `  W ) y ) ( +g  `  W
) z ) ) ) )
55 fvex 6201 . . . . . 6  |-  ( I `
 ( G `  ( ( k ( .s `  W ) y ) ( +g  `  W ) z ) ) )  e.  _V
5654, 20, 55fvmpt 6282 . . . . 5  |-  ( ( ( k ( .s
`  W ) y ) ( +g  `  W
) z )  e.  V  ->  ( N `  ( ( k ( .s `  W ) y ) ( +g  `  W ) z ) )  =  ( I `
 ( G `  ( ( k ( .s `  W ) y ) ( +g  `  W ) z ) ) ) )
5752, 56syl 17 . . . 4  |-  ( (
ph  /\  ( k  e.  ( Base `  R
)  /\  y  e.  V  /\  z  e.  V
) )  ->  ( N `  ( (
k ( .s `  W ) y ) ( +g  `  W
) z ) )  =  ( I `  ( G `  ( ( k ( .s `  W ) y ) ( +g  `  W
) z ) ) ) )
58 fveq2 6191 . . . . . . . . 9  |-  ( x  =  y  ->  ( G `  x )  =  ( G `  y ) )
5958fveq2d 6195 . . . . . . . 8  |-  ( x  =  y  ->  (
I `  ( G `  x ) )  =  ( I `  ( G `  y )
) )
60 fvex 6201 . . . . . . . 8  |-  ( I `
 ( G `  y ) )  e. 
_V
6159, 20, 60fvmpt 6282 . . . . . . 7  |-  ( y  e.  V  ->  ( N `  y )  =  ( I `  ( G `  y ) ) )
6229, 61syl 17 . . . . . 6  |-  ( (
ph  /\  ( k  e.  ( Base `  R
)  /\  y  e.  V  /\  z  e.  V
) )  ->  ( N `  y )  =  ( I `  ( G `  y ) ) )
6362oveq2d 6666 . . . . 5  |-  ( (
ph  /\  ( k  e.  ( Base `  R
)  /\  y  e.  V  /\  z  e.  V
) )  ->  (
k ( .r `  R ) ( N `
 y ) )  =  ( k ( .r `  R ) ( I `  ( G `  y )
) ) )
64 fveq2 6191 . . . . . . . 8  |-  ( x  =  z  ->  ( G `  x )  =  ( G `  z ) )
6564fveq2d 6195 . . . . . . 7  |-  ( x  =  z  ->  (
I `  ( G `  x ) )  =  ( I `  ( G `  z )
) )
66 fvex 6201 . . . . . . 7  |-  ( I `
 ( G `  z ) )  e. 
_V
6765, 20, 66fvmpt 6282 . . . . . 6  |-  ( z  e.  V  ->  ( N `  z )  =  ( I `  ( G `  z ) ) )
6835, 67syl 17 . . . . 5  |-  ( (
ph  /\  ( k  e.  ( Base `  R
)  /\  y  e.  V  /\  z  e.  V
) )  ->  ( N `  z )  =  ( I `  ( G `  z ) ) )
6963, 68oveq12d 6668 . . . 4  |-  ( (
ph  /\  ( k  e.  ( Base `  R
)  /\  y  e.  V  /\  z  e.  V
) )  ->  (
( k ( .r
`  R ) ( N `  y ) ) ( +g  `  R
) ( N `  z ) )  =  ( ( k ( .r `  R ) ( I `  ( G `  y )
) ) ( +g  `  R ) ( I `
 ( G `  z ) ) ) )
7048, 57, 693eqtr4d 2666 . . 3  |-  ( (
ph  /\  ( k  e.  ( Base `  R
)  /\  y  e.  V  /\  z  e.  V
) )  ->  ( N `  ( (
k ( .s `  W ) y ) ( +g  `  W
) z ) )  =  ( ( k ( .r `  R
) ( N `  y ) ) ( +g  `  R ) ( N `  z
) ) )
7170ralrimivvva 2972 . 2  |-  ( ph  ->  A. k  e.  (
Base `  R ) A. y  e.  V  A. z  e.  V  ( N `  ( ( k ( .s `  W ) y ) ( +g  `  W
) z ) )  =  ( ( k ( .r `  R
) ( N `  y ) ) ( +g  `  R ) ( N `  z
) ) )
7213, 41, 2, 42, 12, 38, 32, 14islfl 34347 . . 3  |-  ( W  e.  LMod  ->  ( N  e.  F  <->  ( N : V --> ( Base `  R
)  /\  A. k  e.  ( Base `  R
) A. y  e.  V  A. z  e.  V  ( N `  ( ( k ( .s `  W ) y ) ( +g  `  W ) z ) )  =  ( ( k ( .r `  R ) ( N `
 y ) ) ( +g  `  R
) ( N `  z ) ) ) ) )
731, 72syl 17 . 2  |-  ( ph  ->  ( N  e.  F  <->  ( N : V --> ( Base `  R )  /\  A. k  e.  ( Base `  R ) A. y  e.  V  A. z  e.  V  ( N `  ( ( k ( .s `  W ) y ) ( +g  `  W ) z ) )  =  ( ( k ( .r `  R ) ( N `
 y ) ) ( +g  `  R
) ( N `  z ) ) ) ) )
7421, 71, 73mpbir2and 957 1  |-  ( ph  ->  N  e.  F )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912    |-> cmpt 4729   -->wf 5884   ` cfv 5888  (class class class)co 6650   Basecbs 15857   +g cplusg 15941   .rcmulr 15942  Scalarcsca 15944   .scvsca 15945   Grpcgrp 17422   invgcminusg 17423   Abelcabl 18194   Ringcrg 18547   LModclmod 18863  LFnlclfn 34344
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-lmod 18865  df-lfl 34345
This theorem is referenced by:  ldualgrplem  34432
  Copyright terms: Public domain W3C validator