Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lflvscl Structured version   Visualization version   Unicode version

Theorem lflvscl 34364
Description: Closure of a scalar product with a functional. Note that this is the scalar product for a right vector space with the scalar after the vector; reversing these fails closure. (Contributed by NM, 9-Oct-2014.) (Revised by Mario Carneiro, 22-Apr-2015.)
Hypotheses
Ref Expression
lflsccl.v  |-  V  =  ( Base `  W
)
lflsccl.d  |-  D  =  (Scalar `  W )
lflsccl.k  |-  K  =  ( Base `  D
)
lflsccl.t  |-  .x.  =  ( .r `  D )
lflsccl.f  |-  F  =  (LFnl `  W )
lflsccl.w  |-  ( ph  ->  W  e.  LMod )
lflsccl.g  |-  ( ph  ->  G  e.  F )
lflsccl.r  |-  ( ph  ->  R  e.  K )
Assertion
Ref Expression
lflvscl  |-  ( ph  ->  ( G  oF  .x.  ( V  X.  { R } ) )  e.  F )

Proof of Theorem lflvscl
Dummy variables  x  r  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lflsccl.v . . 3  |-  V  =  ( Base `  W
)
21a1i 11 . 2  |-  ( ph  ->  V  =  ( Base `  W ) )
3 eqidd 2623 . 2  |-  ( ph  ->  ( +g  `  W
)  =  ( +g  `  W ) )
4 lflsccl.d . . 3  |-  D  =  (Scalar `  W )
54a1i 11 . 2  |-  ( ph  ->  D  =  (Scalar `  W ) )
6 eqidd 2623 . 2  |-  ( ph  ->  ( .s `  W
)  =  ( .s
`  W ) )
7 lflsccl.k . . 3  |-  K  =  ( Base `  D
)
87a1i 11 . 2  |-  ( ph  ->  K  =  ( Base `  D ) )
9 eqidd 2623 . 2  |-  ( ph  ->  ( +g  `  D
)  =  ( +g  `  D ) )
10 lflsccl.t . . 3  |-  .x.  =  ( .r `  D )
1110a1i 11 . 2  |-  ( ph  ->  .x.  =  ( .r
`  D ) )
12 lflsccl.f . . 3  |-  F  =  (LFnl `  W )
1312a1i 11 . 2  |-  ( ph  ->  F  =  (LFnl `  W ) )
14 lflsccl.w . . . . 5  |-  ( ph  ->  W  e.  LMod )
154lmodring 18871 . . . . 5  |-  ( W  e.  LMod  ->  D  e. 
Ring )
1614, 15syl 17 . . . 4  |-  ( ph  ->  D  e.  Ring )
177, 10ringcl 18561 . . . . 5  |-  ( ( D  e.  Ring  /\  x  e.  K  /\  y  e.  K )  ->  (
x  .x.  y )  e.  K )
18173expb 1266 . . . 4  |-  ( ( D  e.  Ring  /\  (
x  e.  K  /\  y  e.  K )
)  ->  ( x  .x.  y )  e.  K
)
1916, 18sylan 488 . . 3  |-  ( (
ph  /\  ( x  e.  K  /\  y  e.  K ) )  -> 
( x  .x.  y
)  e.  K )
20 lflsccl.g . . . 4  |-  ( ph  ->  G  e.  F )
214, 7, 1, 12lflf 34350 . . . 4  |-  ( ( W  e.  LMod  /\  G  e.  F )  ->  G : V --> K )
2214, 20, 21syl2anc 693 . . 3  |-  ( ph  ->  G : V --> K )
23 lflsccl.r . . . 4  |-  ( ph  ->  R  e.  K )
24 fconst6g 6094 . . . 4  |-  ( R  e.  K  ->  ( V  X.  { R }
) : V --> K )
2523, 24syl 17 . . 3  |-  ( ph  ->  ( V  X.  { R } ) : V --> K )
26 fvex 6201 . . . . 5  |-  ( Base `  W )  e.  _V
271, 26eqeltri 2697 . . . 4  |-  V  e. 
_V
2827a1i 11 . . 3  |-  ( ph  ->  V  e.  _V )
29 inidm 3822 . . 3  |-  ( V  i^i  V )  =  V
3019, 22, 25, 28, 28, 29off 6912 . 2  |-  ( ph  ->  ( G  oF  .x.  ( V  X.  { R } ) ) : V --> K )
3114adantr 481 . . . . . 6  |-  ( (
ph  /\  ( r  e.  K  /\  x  e.  V  /\  y  e.  V ) )  ->  W  e.  LMod )
3220adantr 481 . . . . . 6  |-  ( (
ph  /\  ( r  e.  K  /\  x  e.  V  /\  y  e.  V ) )  ->  G  e.  F )
33 simpr1 1067 . . . . . 6  |-  ( (
ph  /\  ( r  e.  K  /\  x  e.  V  /\  y  e.  V ) )  -> 
r  e.  K )
34 simpr2 1068 . . . . . 6  |-  ( (
ph  /\  ( r  e.  K  /\  x  e.  V  /\  y  e.  V ) )  ->  x  e.  V )
35 simpr3 1069 . . . . . 6  |-  ( (
ph  /\  ( r  e.  K  /\  x  e.  V  /\  y  e.  V ) )  -> 
y  e.  V )
36 eqid 2622 . . . . . . 7  |-  ( +g  `  W )  =  ( +g  `  W )
37 eqid 2622 . . . . . . 7  |-  ( .s
`  W )  =  ( .s `  W
)
38 eqid 2622 . . . . . . 7  |-  ( +g  `  D )  =  ( +g  `  D )
391, 36, 4, 37, 7, 38, 10, 12lfli 34348 . . . . . 6  |-  ( ( W  e.  LMod  /\  G  e.  F  /\  (
r  e.  K  /\  x  e.  V  /\  y  e.  V )
)  ->  ( G `  ( ( r ( .s `  W ) x ) ( +g  `  W ) y ) )  =  ( ( r  .x.  ( G `
 x ) ) ( +g  `  D
) ( G `  y ) ) )
4031, 32, 33, 34, 35, 39syl113anc 1338 . . . . 5  |-  ( (
ph  /\  ( r  e.  K  /\  x  e.  V  /\  y  e.  V ) )  -> 
( G `  (
( r ( .s
`  W ) x ) ( +g  `  W
) y ) )  =  ( ( r 
.x.  ( G `  x ) ) ( +g  `  D ) ( G `  y
) ) )
4140oveq1d 6665 . . . 4  |-  ( (
ph  /\  ( r  e.  K  /\  x  e.  V  /\  y  e.  V ) )  -> 
( ( G `  ( ( r ( .s `  W ) x ) ( +g  `  W ) y ) )  .x.  R )  =  ( ( ( r  .x.  ( G `
 x ) ) ( +g  `  D
) ( G `  y ) )  .x.  R ) )
4216adantr 481 . . . . 5  |-  ( (
ph  /\  ( r  e.  K  /\  x  e.  V  /\  y  e.  V ) )  ->  D  e.  Ring )
434, 7, 1, 12lflcl 34351 . . . . . . 7  |-  ( ( W  e.  LMod  /\  G  e.  F  /\  x  e.  V )  ->  ( G `  x )  e.  K )
4431, 32, 34, 43syl3anc 1326 . . . . . 6  |-  ( (
ph  /\  ( r  e.  K  /\  x  e.  V  /\  y  e.  V ) )  -> 
( G `  x
)  e.  K )
457, 10ringcl 18561 . . . . . 6  |-  ( ( D  e.  Ring  /\  r  e.  K  /\  ( G `  x )  e.  K )  ->  (
r  .x.  ( G `  x ) )  e.  K )
4642, 33, 44, 45syl3anc 1326 . . . . 5  |-  ( (
ph  /\  ( r  e.  K  /\  x  e.  V  /\  y  e.  V ) )  -> 
( r  .x.  ( G `  x )
)  e.  K )
474, 7, 1, 12lflcl 34351 . . . . . 6  |-  ( ( W  e.  LMod  /\  G  e.  F  /\  y  e.  V )  ->  ( G `  y )  e.  K )
4831, 32, 35, 47syl3anc 1326 . . . . 5  |-  ( (
ph  /\  ( r  e.  K  /\  x  e.  V  /\  y  e.  V ) )  -> 
( G `  y
)  e.  K )
4923adantr 481 . . . . 5  |-  ( (
ph  /\  ( r  e.  K  /\  x  e.  V  /\  y  e.  V ) )  ->  R  e.  K )
507, 38, 10ringdir 18567 . . . . 5  |-  ( ( D  e.  Ring  /\  (
( r  .x.  ( G `  x )
)  e.  K  /\  ( G `  y )  e.  K  /\  R  e.  K ) )  -> 
( ( ( r 
.x.  ( G `  x ) ) ( +g  `  D ) ( G `  y
) )  .x.  R
)  =  ( ( ( r  .x.  ( G `  x )
)  .x.  R )
( +g  `  D ) ( ( G `  y )  .x.  R
) ) )
5142, 46, 48, 49, 50syl13anc 1328 . . . 4  |-  ( (
ph  /\  ( r  e.  K  /\  x  e.  V  /\  y  e.  V ) )  -> 
( ( ( r 
.x.  ( G `  x ) ) ( +g  `  D ) ( G `  y
) )  .x.  R
)  =  ( ( ( r  .x.  ( G `  x )
)  .x.  R )
( +g  `  D ) ( ( G `  y )  .x.  R
) ) )
527, 10ringass 18564 . . . . . 6  |-  ( ( D  e.  Ring  /\  (
r  e.  K  /\  ( G `  x )  e.  K  /\  R  e.  K ) )  -> 
( ( r  .x.  ( G `  x ) )  .x.  R )  =  ( r  .x.  ( ( G `  x )  .x.  R
) ) )
5342, 33, 44, 49, 52syl13anc 1328 . . . . 5  |-  ( (
ph  /\  ( r  e.  K  /\  x  e.  V  /\  y  e.  V ) )  -> 
( ( r  .x.  ( G `  x ) )  .x.  R )  =  ( r  .x.  ( ( G `  x )  .x.  R
) ) )
5453oveq1d 6665 . . . 4  |-  ( (
ph  /\  ( r  e.  K  /\  x  e.  V  /\  y  e.  V ) )  -> 
( ( ( r 
.x.  ( G `  x ) )  .x.  R ) ( +g  `  D ) ( ( G `  y ) 
.x.  R ) )  =  ( ( r 
.x.  ( ( G `
 x )  .x.  R ) ) ( +g  `  D ) ( ( G `  y )  .x.  R
) ) )
5541, 51, 543eqtrd 2660 . . 3  |-  ( (
ph  /\  ( r  e.  K  /\  x  e.  V  /\  y  e.  V ) )  -> 
( ( G `  ( ( r ( .s `  W ) x ) ( +g  `  W ) y ) )  .x.  R )  =  ( ( r 
.x.  ( ( G `
 x )  .x.  R ) ) ( +g  `  D ) ( ( G `  y )  .x.  R
) ) )
561, 4, 37, 7lmodvscl 18880 . . . . . 6  |-  ( ( W  e.  LMod  /\  r  e.  K  /\  x  e.  V )  ->  (
r ( .s `  W ) x )  e.  V )
5731, 33, 34, 56syl3anc 1326 . . . . 5  |-  ( (
ph  /\  ( r  e.  K  /\  x  e.  V  /\  y  e.  V ) )  -> 
( r ( .s
`  W ) x )  e.  V )
581, 36lmodvacl 18877 . . . . 5  |-  ( ( W  e.  LMod  /\  (
r ( .s `  W ) x )  e.  V  /\  y  e.  V )  ->  (
( r ( .s
`  W ) x ) ( +g  `  W
) y )  e.  V )
5931, 57, 35, 58syl3anc 1326 . . . 4  |-  ( (
ph  /\  ( r  e.  K  /\  x  e.  V  /\  y  e.  V ) )  -> 
( ( r ( .s `  W ) x ) ( +g  `  W ) y )  e.  V )
60 ffn 6045 . . . . . 6  |-  ( G : V --> K  ->  G  Fn  V )
6122, 60syl 17 . . . . 5  |-  ( ph  ->  G  Fn  V )
62 eqidd 2623 . . . . 5  |-  ( (
ph  /\  ( (
r ( .s `  W ) x ) ( +g  `  W
) y )  e.  V )  ->  ( G `  ( (
r ( .s `  W ) x ) ( +g  `  W
) y ) )  =  ( G `  ( ( r ( .s `  W ) x ) ( +g  `  W ) y ) ) )
6328, 23, 61, 62ofc2 6921 . . . 4  |-  ( (
ph  /\  ( (
r ( .s `  W ) x ) ( +g  `  W
) y )  e.  V )  ->  (
( G  oF  .x.  ( V  X.  { R } ) ) `
 ( ( r ( .s `  W
) x ) ( +g  `  W ) y ) )  =  ( ( G `  ( ( r ( .s `  W ) x ) ( +g  `  W ) y ) )  .x.  R ) )
6459, 63syldan 487 . . 3  |-  ( (
ph  /\  ( r  e.  K  /\  x  e.  V  /\  y  e.  V ) )  -> 
( ( G  oF  .x.  ( V  X.  { R } ) ) `
 ( ( r ( .s `  W
) x ) ( +g  `  W ) y ) )  =  ( ( G `  ( ( r ( .s `  W ) x ) ( +g  `  W ) y ) )  .x.  R ) )
65 eqidd 2623 . . . . . . 7  |-  ( (
ph  /\  x  e.  V )  ->  ( G `  x )  =  ( G `  x ) )
6628, 23, 61, 65ofc2 6921 . . . . . 6  |-  ( (
ph  /\  x  e.  V )  ->  (
( G  oF  .x.  ( V  X.  { R } ) ) `
 x )  =  ( ( G `  x )  .x.  R
) )
6734, 66syldan 487 . . . . 5  |-  ( (
ph  /\  ( r  e.  K  /\  x  e.  V  /\  y  e.  V ) )  -> 
( ( G  oF  .x.  ( V  X.  { R } ) ) `
 x )  =  ( ( G `  x )  .x.  R
) )
6867oveq2d 6666 . . . 4  |-  ( (
ph  /\  ( r  e.  K  /\  x  e.  V  /\  y  e.  V ) )  -> 
( r  .x.  (
( G  oF  .x.  ( V  X.  { R } ) ) `
 x ) )  =  ( r  .x.  ( ( G `  x )  .x.  R
) ) )
69 eqidd 2623 . . . . . 6  |-  ( (
ph  /\  y  e.  V )  ->  ( G `  y )  =  ( G `  y ) )
7028, 23, 61, 69ofc2 6921 . . . . 5  |-  ( (
ph  /\  y  e.  V )  ->  (
( G  oF  .x.  ( V  X.  { R } ) ) `
 y )  =  ( ( G `  y )  .x.  R
) )
7135, 70syldan 487 . . . 4  |-  ( (
ph  /\  ( r  e.  K  /\  x  e.  V  /\  y  e.  V ) )  -> 
( ( G  oF  .x.  ( V  X.  { R } ) ) `
 y )  =  ( ( G `  y )  .x.  R
) )
7268, 71oveq12d 6668 . . 3  |-  ( (
ph  /\  ( r  e.  K  /\  x  e.  V  /\  y  e.  V ) )  -> 
( ( r  .x.  ( ( G  oF  .x.  ( V  X.  { R } ) ) `
 x ) ) ( +g  `  D
) ( ( G  oF  .x.  ( V  X.  { R }
) ) `  y
) )  =  ( ( r  .x.  (
( G `  x
)  .x.  R )
) ( +g  `  D
) ( ( G `
 y )  .x.  R ) ) )
7355, 64, 723eqtr4d 2666 . 2  |-  ( (
ph  /\  ( r  e.  K  /\  x  e.  V  /\  y  e.  V ) )  -> 
( ( G  oF  .x.  ( V  X.  { R } ) ) `
 ( ( r ( .s `  W
) x ) ( +g  `  W ) y ) )  =  ( ( r  .x.  ( ( G  oF  .x.  ( V  X.  { R } ) ) `
 x ) ) ( +g  `  D
) ( ( G  oF  .x.  ( V  X.  { R }
) ) `  y
) ) )
742, 3, 5, 6, 8, 9, 11, 13, 30, 73, 14islfld 34349 1  |-  ( ph  ->  ( G  oF  .x.  ( V  X.  { R } ) )  e.  F )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   _Vcvv 3200   {csn 4177    X. cxp 5112    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650    oFcof 6895   Basecbs 15857   +g cplusg 15941   .rcmulr 15942  Scalarcsca 15944   .scvsca 15945   Ringcrg 18547   LModclmod 18863  LFnlclfn 34344
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-mgp 18490  df-ring 18549  df-lmod 18865  df-lfl 34345
This theorem is referenced by:  lkrsc  34384  lfl1dim  34408  ldualvscl  34426  ldualvsass  34428
  Copyright terms: Public domain W3C validator