MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limensuc Structured version   Visualization version   Unicode version

Theorem limensuc 8137
Description: A limit ordinal is equinumerous to its successor. (Contributed by NM, 30-Oct-2003.)
Assertion
Ref Expression
limensuc  |-  ( ( A  e.  V  /\  Lim  A )  ->  A  ~~  suc  A )

Proof of Theorem limensuc
StepHypRef Expression
1 eleq1 2689 . . . 4  |-  ( A  =  if ( Lim 
A ,  A ,  On )  ->  ( A  e.  V  <->  if ( Lim  A ,  A ,  On )  e.  V
) )
2 id 22 . . . . 5  |-  ( A  =  if ( Lim 
A ,  A ,  On )  ->  A  =  if ( Lim  A ,  A ,  On ) )
3 suceq 5790 . . . . 5  |-  ( A  =  if ( Lim 
A ,  A ,  On )  ->  suc  A  =  suc  if ( Lim 
A ,  A ,  On ) )
42, 3breq12d 4666 . . . 4  |-  ( A  =  if ( Lim 
A ,  A ,  On )  ->  ( A 
~~  suc  A  <->  if ( Lim  A ,  A ,  On )  ~~  suc  if ( Lim  A ,  A ,  On ) ) )
51, 4imbi12d 334 . . 3  |-  ( A  =  if ( Lim 
A ,  A ,  On )  ->  ( ( A  e.  V  ->  A  ~~  suc  A )  <-> 
( if ( Lim 
A ,  A ,  On )  e.  V  ->  if ( Lim  A ,  A ,  On ) 
~~  suc  if ( Lim  A ,  A ,  On ) ) ) )
6 limeq 5735 . . . . 5  |-  ( A  =  if ( Lim 
A ,  A ,  On )  ->  ( Lim 
A  <->  Lim  if ( Lim 
A ,  A ,  On ) ) )
7 limeq 5735 . . . . 5  |-  ( On  =  if ( Lim 
A ,  A ,  On )  ->  ( Lim 
On 
<->  Lim  if ( Lim 
A ,  A ,  On ) ) )
8 limon 7036 . . . . 5  |-  Lim  On
96, 7, 8elimhyp 4146 . . . 4  |-  Lim  if ( Lim  A ,  A ,  On )
109limensuci 8136 . . 3  |-  ( if ( Lim  A ,  A ,  On )  e.  V  ->  if ( Lim  A ,  A ,  On )  ~~  suc  if ( Lim  A ,  A ,  On )
)
115, 10dedth 4139 . 2  |-  ( Lim 
A  ->  ( A  e.  V  ->  A  ~~  suc  A ) )
1211impcom 446 1  |-  ( ( A  e.  V  /\  Lim  A )  ->  A  ~~  suc  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   ifcif 4086   class class class wbr 4653   Oncon0 5723   Lim wlim 5724   suc csuc 5725    ~~ cen 7952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-1o 7560  df-er 7742  df-en 7956  df-dom 7957
This theorem is referenced by:  infensuc  8138
  Copyright terms: Public domain W3C validator