| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > infensuc | Structured version Visualization version Unicode version | ||
| Description: Any infinite ordinal is equinumerous to its successor. Exercise 7 of [TakeutiZaring] p. 88. Proved without the Axiom of Infinity. (Contributed by NM, 30-Oct-2003.) (Revised by Mario Carneiro, 13-Jan-2013.) |
| Ref | Expression |
|---|---|
| infensuc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onprc 6984 |
. . . . 5
| |
| 2 | eleq1 2689 |
. . . . 5
| |
| 3 | 1, 2 | mtbiri 317 |
. . . 4
|
| 4 | ssexg 4804 |
. . . . 5
| |
| 5 | 4 | ancoms 469 |
. . . 4
|
| 6 | 3, 5 | nsyl3 133 |
. . 3
|
| 7 | omon 7076 |
. . . 4
| |
| 8 | 7 | ori 390 |
. . 3
|
| 9 | 6, 8 | nsyl2 142 |
. 2
|
| 10 | id 22 |
. . . . . . 7
| |
| 11 | suceq 5790 |
. . . . . . 7
| |
| 12 | 10, 11 | breq12d 4666 |
. . . . . 6
|
| 13 | id 22 |
. . . . . . 7
| |
| 14 | suceq 5790 |
. . . . . . 7
| |
| 15 | 13, 14 | breq12d 4666 |
. . . . . 6
|
| 16 | id 22 |
. . . . . . 7
| |
| 17 | suceq 5790 |
. . . . . . 7
| |
| 18 | 16, 17 | breq12d 4666 |
. . . . . 6
|
| 19 | id 22 |
. . . . . . 7
| |
| 20 | suceq 5790 |
. . . . . . 7
| |
| 21 | 19, 20 | breq12d 4666 |
. . . . . 6
|
| 22 | limom 7080 |
. . . . . . 7
| |
| 23 | 22 | limensuci 8136 |
. . . . . 6
|
| 24 | vex 3203 |
. . . . . . . . . 10
| |
| 25 | 24 | sucex 7011 |
. . . . . . . . . 10
|
| 26 | en2sn 8037 |
. . . . . . . . . 10
| |
| 27 | 24, 25, 26 | mp2an 708 |
. . . . . . . . 9
|
| 28 | eloni 5733 |
. . . . . . . . . . . . 13
| |
| 29 | ordirr 5741 |
. . . . . . . . . . . . 13
| |
| 30 | 28, 29 | syl 17 |
. . . . . . . . . . . 12
|
| 31 | disjsn 4246 |
. . . . . . . . . . . 12
| |
| 32 | 30, 31 | sylibr 224 |
. . . . . . . . . . 11
|
| 33 | eloni 5733 |
. . . . . . . . . . . . 13
| |
| 34 | ordirr 5741 |
. . . . . . . . . . . . 13
| |
| 35 | 33, 34 | syl 17 |
. . . . . . . . . . . 12
|
| 36 | sucelon 7017 |
. . . . . . . . . . . 12
| |
| 37 | disjsn 4246 |
. . . . . . . . . . . 12
| |
| 38 | 35, 36, 37 | 3imtr4i 281 |
. . . . . . . . . . 11
|
| 39 | 32, 38 | jca 554 |
. . . . . . . . . 10
|
| 40 | unen 8040 |
. . . . . . . . . . . 12
| |
| 41 | df-suc 5729 |
. . . . . . . . . . . 12
| |
| 42 | df-suc 5729 |
. . . . . . . . . . . 12
| |
| 43 | 40, 41, 42 | 3brtr4g 4687 |
. . . . . . . . . . 11
|
| 44 | 43 | ex 450 |
. . . . . . . . . 10
|
| 45 | 39, 44 | syl5 34 |
. . . . . . . . 9
|
| 46 | 27, 45 | mpan2 707 |
. . . . . . . 8
|
| 47 | 46 | com12 32 |
. . . . . . 7
|
| 48 | 47 | ad2antrr 762 |
. . . . . 6
|
| 49 | vex 3203 |
. . . . . . . . 9
| |
| 50 | limensuc 8137 |
. . . . . . . . 9
| |
| 51 | 49, 50 | mpan 706 |
. . . . . . . 8
|
| 52 | 51 | ad2antrr 762 |
. . . . . . 7
|
| 53 | 52 | a1d 25 |
. . . . . 6
|
| 54 | 12, 15, 18, 21, 23, 48, 53 | tfindsg 7060 |
. . . . 5
|
| 55 | 54 | exp31 630 |
. . . 4
|
| 56 | 55 | com23 86 |
. . 3
|
| 57 | 56 | imp 445 |
. 2
|
| 58 | 9, 57 | mpd 15 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-om 7066 df-1o 7560 df-er 7742 df-en 7956 df-dom 7957 |
| This theorem is referenced by: cardlim 8798 cardsucinf 8810 |
| Copyright terms: Public domain | W3C validator |