MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmbrf Structured version   Visualization version   Unicode version

Theorem lmbrf 21064
Description: Express the binary relation "sequence  F converges to point  P " in a metric space using an arbitrary upper set of integers. This version of lmbr2 21063 presupposes that  F is a function. (Contributed by Mario Carneiro, 14-Nov-2013.)
Hypotheses
Ref Expression
lmbr.2  |-  ( ph  ->  J  e.  (TopOn `  X ) )
lmbr2.4  |-  Z  =  ( ZZ>= `  M )
lmbr2.5  |-  ( ph  ->  M  e.  ZZ )
lmbrf.6  |-  ( ph  ->  F : Z --> X )
lmbrf.7  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )
Assertion
Ref Expression
lmbrf  |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  ( P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A  e.  u )
) ) )
Distinct variable groups:    j, k, u, F    j, J, k, u    ph, j, k, u   
j, Z, k, u   
j, M    P, j,
k, u    j, X, k, u
Allowed substitution hints:    A( u, j, k)    M( u, k)

Proof of Theorem lmbrf
StepHypRef Expression
1 lmbr.2 . . 3  |-  ( ph  ->  J  e.  (TopOn `  X ) )
2 lmbr2.4 . . 3  |-  Z  =  ( ZZ>= `  M )
3 lmbr2.5 . . 3  |-  ( ph  ->  M  e.  ZZ )
41, 2, 3lmbr2 21063 . 2  |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  u ) ) ) ) )
5 3anass 1042 . . 3  |-  ( ( F  e.  ( X 
^pm  CC )  /\  P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  u
) ) )  <->  ( F  e.  ( X  ^pm  CC )  /\  ( P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  u
) ) ) ) )
62uztrn2 11705 . . . . . . . . . . 11  |-  ( ( j  e.  Z  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  Z )
7 lmbrf.7 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )
87eleq1d 2686 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  Z )  ->  (
( F `  k
)  e.  u  <->  A  e.  u ) )
9 lmbrf.6 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  F : Z --> X )
10 fdm 6051 . . . . . . . . . . . . . . . 16  |-  ( F : Z --> X  ->  dom  F  =  Z )
119, 10syl 17 . . . . . . . . . . . . . . 15  |-  ( ph  ->  dom  F  =  Z )
1211eleq2d 2687 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( k  e.  dom  F  <-> 
k  e.  Z ) )
1312biimpar 502 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  Z )  ->  k  e.  dom  F )
1413biantrurd 529 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  Z )  ->  (
( F `  k
)  e.  u  <->  ( k  e.  dom  F  /\  ( F `  k )  e.  u ) ) )
158, 14bitr3d 270 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  Z )  ->  ( A  e.  u  <->  ( k  e.  dom  F  /\  ( F `  k )  e.  u ) ) )
166, 15sylan2 491 . . . . . . . . . 10  |-  ( (
ph  /\  ( j  e.  Z  /\  k  e.  ( ZZ>= `  j )
) )  ->  ( A  e.  u  <->  ( k  e.  dom  F  /\  ( F `  k )  e.  u ) ) )
1716anassrs 680 . . . . . . . . 9  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  ->  ( A  e.  u  <->  ( k  e. 
dom  F  /\  ( F `  k )  e.  u ) ) )
1817ralbidva 2985 . . . . . . . 8  |-  ( (
ph  /\  j  e.  Z )  ->  ( A. k  e.  ( ZZ>=
`  j ) A  e.  u  <->  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  u
) ) )
1918rexbidva 3049 . . . . . . 7  |-  ( ph  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A  e.  u  <->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  u
) ) )
2019imbi2d 330 . . . . . 6  |-  ( ph  ->  ( ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A  e.  u )  <->  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  u ) ) ) )
2120ralbidv 2986 . . . . 5  |-  ( ph  ->  ( A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A  e.  u )  <->  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  u ) ) ) )
2221anbi2d 740 . . . 4  |-  ( ph  ->  ( ( P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A  e.  u )
)  <->  ( P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  u
) ) ) ) )
23 toponmax 20730 . . . . . . . 8  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  J )
241, 23syl 17 . . . . . . 7  |-  ( ph  ->  X  e.  J )
25 cnex 10017 . . . . . . 7  |-  CC  e.  _V
2624, 25jctir 561 . . . . . 6  |-  ( ph  ->  ( X  e.  J  /\  CC  e.  _V )
)
27 uzssz 11707 . . . . . . . . 9  |-  ( ZZ>= `  M )  C_  ZZ
28 zsscn 11385 . . . . . . . . 9  |-  ZZ  C_  CC
2927, 28sstri 3612 . . . . . . . 8  |-  ( ZZ>= `  M )  C_  CC
302, 29eqsstri 3635 . . . . . . 7  |-  Z  C_  CC
319, 30jctir 561 . . . . . 6  |-  ( ph  ->  ( F : Z --> X  /\  Z  C_  CC ) )
32 elpm2r 7875 . . . . . 6  |-  ( ( ( X  e.  J  /\  CC  e.  _V )  /\  ( F : Z --> X  /\  Z  C_  CC ) )  ->  F  e.  ( X  ^pm  CC ) )
3326, 31, 32syl2anc 693 . . . . 5  |-  ( ph  ->  F  e.  ( X 
^pm  CC ) )
3433biantrurd 529 . . . 4  |-  ( ph  ->  ( ( P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  u
) ) )  <->  ( F  e.  ( X  ^pm  CC )  /\  ( P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  u
) ) ) ) ) )
3522, 34bitr2d 269 . . 3  |-  ( ph  ->  ( ( F  e.  ( X  ^pm  CC )  /\  ( P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  u
) ) ) )  <-> 
( P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) A  e.  u ) ) ) )
365, 35syl5bb 272 . 2  |-  ( ph  ->  ( ( F  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  u ) ) )  <->  ( P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A  e.  u )
) ) )
374, 36bitrd 268 1  |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  ( P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A  e.  u )
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   _Vcvv 3200    C_ wss 3574   class class class wbr 4653   dom cdm 5114   -->wf 5884   ` cfv 5888  (class class class)co 6650    ^pm cpm 7858   CCcc 9934   ZZcz 11377   ZZ>=cuz 11687  TopOnctopon 20715   ~~> tclm 21030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-neg 10269  df-z 11378  df-uz 11688  df-top 20699  df-topon 20716  df-lm 21033
This theorem is referenced by:  lmconst  21065  lmss  21102  1stcelcls  21264  txlm  21451  lmflf  21809  lmxrge0  29998
  Copyright terms: Public domain W3C validator