| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmbrf | Structured version Visualization version Unicode version | ||
| Description: Express the binary
relation "sequence |
| Ref | Expression |
|---|---|
| lmbr.2 |
|
| lmbr2.4 |
|
| lmbr2.5 |
|
| lmbrf.6 |
|
| lmbrf.7 |
|
| Ref | Expression |
|---|---|
| lmbrf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmbr.2 |
. . 3
| |
| 2 | lmbr2.4 |
. . 3
| |
| 3 | lmbr2.5 |
. . 3
| |
| 4 | 1, 2, 3 | lmbr2 21063 |
. 2
|
| 5 | 3anass 1042 |
. . 3
| |
| 6 | 2 | uztrn2 11705 |
. . . . . . . . . . 11
|
| 7 | lmbrf.7 |
. . . . . . . . . . . . 13
| |
| 8 | 7 | eleq1d 2686 |
. . . . . . . . . . . 12
|
| 9 | lmbrf.6 |
. . . . . . . . . . . . . . . 16
| |
| 10 | fdm 6051 |
. . . . . . . . . . . . . . . 16
| |
| 11 | 9, 10 | syl 17 |
. . . . . . . . . . . . . . 15
|
| 12 | 11 | eleq2d 2687 |
. . . . . . . . . . . . . 14
|
| 13 | 12 | biimpar 502 |
. . . . . . . . . . . . 13
|
| 14 | 13 | biantrurd 529 |
. . . . . . . . . . . 12
|
| 15 | 8, 14 | bitr3d 270 |
. . . . . . . . . . 11
|
| 16 | 6, 15 | sylan2 491 |
. . . . . . . . . 10
|
| 17 | 16 | anassrs 680 |
. . . . . . . . 9
|
| 18 | 17 | ralbidva 2985 |
. . . . . . . 8
|
| 19 | 18 | rexbidva 3049 |
. . . . . . 7
|
| 20 | 19 | imbi2d 330 |
. . . . . 6
|
| 21 | 20 | ralbidv 2986 |
. . . . 5
|
| 22 | 21 | anbi2d 740 |
. . . 4
|
| 23 | toponmax 20730 |
. . . . . . . 8
| |
| 24 | 1, 23 | syl 17 |
. . . . . . 7
|
| 25 | cnex 10017 |
. . . . . . 7
| |
| 26 | 24, 25 | jctir 561 |
. . . . . 6
|
| 27 | uzssz 11707 |
. . . . . . . . 9
| |
| 28 | zsscn 11385 |
. . . . . . . . 9
| |
| 29 | 27, 28 | sstri 3612 |
. . . . . . . 8
|
| 30 | 2, 29 | eqsstri 3635 |
. . . . . . 7
|
| 31 | 9, 30 | jctir 561 |
. . . . . 6
|
| 32 | elpm2r 7875 |
. . . . . 6
| |
| 33 | 26, 31, 32 | syl2anc 693 |
. . . . 5
|
| 34 | 33 | biantrurd 529 |
. . . 4
|
| 35 | 22, 34 | bitr2d 269 |
. . 3
|
| 36 | 5, 35 | syl5bb 272 |
. 2
|
| 37 | 4, 36 | bitrd 268 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-pre-lttri 10010 ax-pre-lttrn 10011 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-po 5035 df-so 5036 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-er 7742 df-pm 7860 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-neg 10269 df-z 11378 df-uz 11688 df-top 20699 df-topon 20716 df-lm 21033 |
| This theorem is referenced by: lmconst 21065 lmss 21102 1stcelcls 21264 txlm 21451 lmflf 21809 lmxrge0 29998 |
| Copyright terms: Public domain | W3C validator |