Proof of Theorem 2llnjaN
Step | Hyp | Ref
| Expression |
1 | | eqid 2622 |
. 2
         |
2 | | 2llnja.l |
. 2
     |
3 | | simpl1l 1112 |
. . 3
     
 
            
  |
4 | | hllat 34650 |
. . 3
   |
5 | 3, 4 | syl 17 |
. 2
     
 
            
  |
6 | | simpl21 1139 |
. . . 4
     
 
            
  |
7 | | simpl22 1140 |
. . . 4
     
 
            
  |
8 | | 2llnja.j |
. . . . 5
     |
9 | | 2llnja.a |
. . . . 5
     |
10 | 1, 8, 9 | hlatjcl 34653 |
. . . 4
 
         |
11 | 3, 6, 7, 10 | syl3anc 1326 |
. . 3
     
 
            
        |
12 | | simpl31 1142 |
. . . 4
     
 
            
  |
13 | | simpl32 1143 |
. . . 4
     
 
            
  |
14 | 1, 8, 9 | hlatjcl 34653 |
. . . 4
 
         |
15 | 3, 12, 13, 14 | syl3anc 1326 |
. . 3
     
 
            
        |
16 | 1, 8 | latjcl 17051 |
. . 3
  
    
      
   
        |
17 | 5, 11, 15, 16 | syl3anc 1326 |
. 2
     
 
            
   
        |
18 | | simpl1r 1113 |
. . 3
     
 
            
  |
19 | | 2llnja.p |
. . . 4
     |
20 | 1, 19 | lplnbase 34820 |
. . 3
       |
21 | 18, 20 | syl 17 |
. 2
     
 
            
      |
22 | | simpr1 1067 |
. . 3
     
 
            
    |
23 | | simpr2 1068 |
. . 3
     
 
            
    |
24 | 1, 2, 8 | latjle12 17062 |
. . . 4
              
         

 
   
 
   |
25 | 5, 11, 15, 21, 24 | syl13anc 1328 |
. . 3
     
 
            
      
   
 
   |
26 | 22, 23, 25 | mpbi2and 956 |
. 2
     
 
            
   
 
  |
27 | 1, 9 | atbase 34576 |
. . . . . . . . . 10
       |
28 | 13, 27 | syl 17 |
. . . . . . . . 9
     
 
            
      |
29 | 1, 8 | latjcl 17051 |
. . . . . . . . 9
  
    
    
          |
30 | 5, 11, 28, 29 | syl3anc 1326 |
. . . . . . . 8
     
 
            
          |
31 | 1, 9 | atbase 34576 |
. . . . . . . . . . 11
       |
32 | 12, 31 | syl 17 |
. . . . . . . . . 10
     
 
            
      |
33 | 1, 2, 8 | latlej2 17061 |
. . . . . . . . . 10
 
             |
34 | 5, 32, 28, 33 | syl3anc 1326 |
. . . . . . . . 9
     
 
            
    |
35 | 1, 2, 8 | latjlej2 17066 |
. . . . . . . . . 10
  
    
    
          
   
   
     |
36 | 5, 28, 15, 11, 35 | syl13anc 1328 |
. . . . . . . . 9
     
 
            
  
   
   
     |
37 | 34, 36 | mpd 15 |
. . . . . . . 8
     
 
            
   
   
    |
38 | 1, 2, 5, 30, 17, 21, 37, 26 | lattrd 17058 |
. . . . . . 7
     
 
            
   
  |
39 | 38 | 3adant3 1081 |
. . . . . 6
     
 
                  
  |
40 | | simp11l 1172 |
. . . . . . 7
     
 
                 |
41 | | simp121 1193 |
. . . . . . . 8
     
 
                 |
42 | | simp122 1194 |
. . . . . . . 8
     
 
                 |
43 | | simp132 1197 |
. . . . . . . 8
     
 
                 |
44 | | simp123 1195 |
. . . . . . . 8
     
 
                 |
45 | | simp23 1096 |
. . . . . . . . 9
     
 
                     |
46 | | simpl3 1066 |
. . . . . . . . . . . . . 14
      
 
                      |
47 | | simpr 477 |
. . . . . . . . . . . . . 14
      
 
                      |
48 | 1, 2, 8 | latjle12 17062 |
. . . . . . . . . . . . . . . . 17
  
   
                          |
49 | 5, 32, 28, 11, 48 | syl13anc 1328 |
. . . . . . . . . . . . . . . 16
     
 
            
        
     |
50 | 49 | 3adant3 1081 |
. . . . . . . . . . . . . . 15
     
 
                  
    
     |
51 | 50 | adantr 481 |
. . . . . . . . . . . . . 14
      
 
                     
    
     |
52 | 46, 47, 51 | mpbi2and 956 |
. . . . . . . . . . . . 13
      
 
                   
    |
53 | | simpl3 1066 |
. . . . . . . . . . . . . . . 16
     
 
            

   |
54 | 2, 8, 9 | ps-1 34763 |
. . . . . . . . . . . . . . . 16
  


    
 
       |
55 | 3, 53, 6, 7, 54 | syl112anc 1330 |
. . . . . . . . . . . . . . 15
     
 
            
   
        |
56 | 55 | 3adant3 1081 |
. . . . . . . . . . . . . 14
     
 
                  
        |
57 | 56 | adantr 481 |
. . . . . . . . . . . . 13
      
 
                     
        |
58 | 52, 57 | mpbid 222 |
. . . . . . . . . . . 12
      
 
                        |
59 | 58 | eqcomd 2628 |
. . . . . . . . . . 11
      
 
                        |
60 | 59 | ex 450 |
. . . . . . . . . 10
     
 
                         |
61 | 60 | necon3ad 2807 |
. . . . . . . . 9
     
 
                   
     |
62 | 45, 61 | mpd 15 |
. . . . . . . 8
     
 
              
    |
63 | 2, 8, 9, 19 | lplni2 34823 |
. . . . . . . 8
  

           |
64 | 40, 41, 42, 43, 44, 62, 63 | syl132anc 1344 |
. . . . . . 7
     
 
                     |
65 | | simp11r 1173 |
. . . . . . 7
     
 
                 |
66 | 2, 19 | lplncmp 34848 |
. . . . . . 7
                   |
67 | 40, 64, 65, 66 | syl3anc 1326 |
. . . . . 6
     
 
                           |
68 | 39, 67 | mpbid 222 |
. . . . 5
     
 
                     |
69 | 37 | 3adant3 1081 |
. . . . 5
     
 
                  
   
    |
70 | 68, 69 | eqbrtrrd 4677 |
. . . 4
     
 
                       |
71 | 70 | 3expia 1267 |
. . 3
     
 
            
  
  
      |
72 | 1, 8 | latjcl 17051 |
. . . . . . . . 9
  
    
    
          |
73 | 5, 11, 32, 72 | syl3anc 1326 |
. . . . . . . 8
     
 
            
          |
74 | 1, 2, 8 | latlej1 17060 |
. . . . . . . . . 10
 
             |
75 | 5, 32, 28, 74 | syl3anc 1326 |
. . . . . . . . 9
     
 
            
    |
76 | 1, 2, 8 | latjlej2 17066 |
. . . . . . . . . 10
  
    
    
          
   
   
     |
77 | 5, 32, 15, 11, 76 | syl13anc 1328 |
. . . . . . . . 9
     
 
            
  
   
   
     |
78 | 75, 77 | mpd 15 |
. . . . . . . 8
     
 
            
   
   
    |
79 | 1, 2, 5, 73, 17, 21, 78, 26 | lattrd 17058 |
. . . . . . 7
     
 
            
   
  |
80 | 79 | 3adant3 1081 |
. . . . . 6
     
 
              
   
  |
81 | | simp11l 1172 |
. . . . . . 7
     
 
              
  |
82 | | simp121 1193 |
. . . . . . . 8
     
 
              
  |
83 | | simp122 1194 |
. . . . . . . 8
     
 
              
  |
84 | | simp131 1196 |
. . . . . . . 8
     
 
              
  |
85 | | simp123 1195 |
. . . . . . . 8
     
 
              
  |
86 | | simp3 1063 |
. . . . . . . 8
     
 
              
    |
87 | 2, 8, 9, 19 | lplni2 34823 |
. . . . . . . 8
  

           |
88 | 81, 82, 83, 84, 85, 86, 87 | syl132anc 1344 |
. . . . . . 7
     
 
              
      |
89 | | simp11r 1173 |
. . . . . . 7
     
 
              
  |
90 | 2, 19 | lplncmp 34848 |
. . . . . . 7
                   |
91 | 81, 88, 89, 90 | syl3anc 1326 |
. . . . . 6
     
 
              
   
        |
92 | 80, 91 | mpbid 222 |
. . . . 5
     
 
              
      |
93 | 78 | 3adant3 1081 |
. . . . 5
     
 
              
   
   
    |
94 | 92, 93 | eqbrtrrd 4677 |
. . . 4
     
 
              
  
     |
95 | 94 | 3expia 1267 |
. . 3
     
 
            
  
  
      |
96 | 71, 95 | pm2.61d 170 |
. 2
     
 
            
  
     |
97 | 1, 2, 5, 17, 21, 26, 96 | latasymd 17057 |
1
     
 
            
   
    |