Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ztprmneprm Structured version   Visualization version   Unicode version

Theorem ztprmneprm 42125
Description: A prime is not an integer multiple of another prime. (Contributed by AV, 23-May-2019.)
Assertion
Ref Expression
ztprmneprm  |-  ( ( Z  e.  ZZ  /\  A  e.  Prime  /\  B  e.  Prime )  ->  (
( Z  x.  A
)  =  B  ->  A  =  B )
)

Proof of Theorem ztprmneprm
StepHypRef Expression
1 elznn0nn 11391 . . 3  |-  ( Z  e.  ZZ  <->  ( Z  e.  NN0  \/  ( Z  e.  RR  /\  -u Z  e.  NN ) ) )
2 elnn0 11294 . . . . 5  |-  ( Z  e.  NN0  <->  ( Z  e.  NN  \/  Z  =  0 ) )
3 elnn1uz2 11765 . . . . . . 7  |-  ( Z  e.  NN  <->  ( Z  =  1  \/  Z  e.  ( ZZ>= `  2 )
) )
4 oveq1 6657 . . . . . . . . . . . 12  |-  ( Z  =  1  ->  ( Z  x.  A )  =  ( 1  x.  A ) )
54adantr 481 . . . . . . . . . . 11  |-  ( ( Z  =  1  /\  ( A  e.  Prime  /\  B  e.  Prime )
)  ->  ( Z  x.  A )  =  ( 1  x.  A ) )
65eqeq1d 2624 . . . . . . . . . 10  |-  ( ( Z  =  1  /\  ( A  e.  Prime  /\  B  e.  Prime )
)  ->  ( ( Z  x.  A )  =  B  <->  ( 1  x.  A )  =  B ) )
7 prmz 15389 . . . . . . . . . . . . . . . 16  |-  ( A  e.  Prime  ->  A  e.  ZZ )
87zcnd 11483 . . . . . . . . . . . . . . 15  |-  ( A  e.  Prime  ->  A  e.  CC )
98mulid2d 10058 . . . . . . . . . . . . . 14  |-  ( A  e.  Prime  ->  ( 1  x.  A )  =  A )
109adantr 481 . . . . . . . . . . . . 13  |-  ( ( A  e.  Prime  /\  B  e.  Prime )  ->  (
1  x.  A )  =  A )
1110eqeq1d 2624 . . . . . . . . . . . 12  |-  ( ( A  e.  Prime  /\  B  e.  Prime )  ->  (
( 1  x.  A
)  =  B  <->  A  =  B ) )
1211biimpd 219 . . . . . . . . . . 11  |-  ( ( A  e.  Prime  /\  B  e.  Prime )  ->  (
( 1  x.  A
)  =  B  ->  A  =  B )
)
1312adantl 482 . . . . . . . . . 10  |-  ( ( Z  =  1  /\  ( A  e.  Prime  /\  B  e.  Prime )
)  ->  ( (
1  x.  A )  =  B  ->  A  =  B ) )
146, 13sylbid 230 . . . . . . . . 9  |-  ( ( Z  =  1  /\  ( A  e.  Prime  /\  B  e.  Prime )
)  ->  ( ( Z  x.  A )  =  B  ->  A  =  B ) )
1514ex 450 . . . . . . . 8  |-  ( Z  =  1  ->  (
( A  e.  Prime  /\  B  e.  Prime )  ->  ( ( Z  x.  A )  =  B  ->  A  =  B ) ) )
16 prmuz2 15408 . . . . . . . . . . . 12  |-  ( A  e.  Prime  ->  A  e.  ( ZZ>= `  2 )
)
1716adantr 481 . . . . . . . . . . 11  |-  ( ( A  e.  Prime  /\  B  e.  Prime )  ->  A  e.  ( ZZ>= `  2 )
)
18 nprm 15401 . . . . . . . . . . 11  |-  ( ( Z  e.  ( ZZ>= ` 
2 )  /\  A  e.  ( ZZ>= `  2 )
)  ->  -.  ( Z  x.  A )  e.  Prime )
1917, 18sylan2 491 . . . . . . . . . 10  |-  ( ( Z  e.  ( ZZ>= ` 
2 )  /\  ( A  e.  Prime  /\  B  e.  Prime ) )  ->  -.  ( Z  x.  A
)  e.  Prime )
20 eleq1 2689 . . . . . . . . . . . . 13  |-  ( ( Z  x.  A )  =  B  ->  (
( Z  x.  A
)  e.  Prime  <->  B  e.  Prime ) )
2120notbid 308 . . . . . . . . . . . 12  |-  ( ( Z  x.  A )  =  B  ->  ( -.  ( Z  x.  A
)  e.  Prime  <->  -.  B  e.  Prime ) )
22 pm2.24 121 . . . . . . . . . . . . . . 15  |-  ( B  e.  Prime  ->  ( -.  B  e.  Prime  ->  A  =  B ) )
2322adantl 482 . . . . . . . . . . . . . 14  |-  ( ( A  e.  Prime  /\  B  e.  Prime )  ->  ( -.  B  e.  Prime  ->  A  =  B )
)
2423adantl 482 . . . . . . . . . . . . 13  |-  ( ( Z  e.  ( ZZ>= ` 
2 )  /\  ( A  e.  Prime  /\  B  e.  Prime ) )  -> 
( -.  B  e. 
Prime  ->  A  =  B ) )
2524com12 32 . . . . . . . . . . . 12  |-  ( -.  B  e.  Prime  ->  ( ( Z  e.  (
ZZ>= `  2 )  /\  ( A  e.  Prime  /\  B  e.  Prime )
)  ->  A  =  B ) )
2621, 25syl6bi 243 . . . . . . . . . . 11  |-  ( ( Z  x.  A )  =  B  ->  ( -.  ( Z  x.  A
)  e.  Prime  ->  ( ( Z  e.  (
ZZ>= `  2 )  /\  ( A  e.  Prime  /\  B  e.  Prime )
)  ->  A  =  B ) ) )
2726com3l 89 . . . . . . . . . 10  |-  ( -.  ( Z  x.  A
)  e.  Prime  ->  ( ( Z  e.  (
ZZ>= `  2 )  /\  ( A  e.  Prime  /\  B  e.  Prime )
)  ->  ( ( Z  x.  A )  =  B  ->  A  =  B ) ) )
2819, 27mpcom 38 . . . . . . . . 9  |-  ( ( Z  e.  ( ZZ>= ` 
2 )  /\  ( A  e.  Prime  /\  B  e.  Prime ) )  -> 
( ( Z  x.  A )  =  B  ->  A  =  B ) )
2928ex 450 . . . . . . . 8  |-  ( Z  e.  ( ZZ>= `  2
)  ->  ( ( A  e.  Prime  /\  B  e.  Prime )  ->  (
( Z  x.  A
)  =  B  ->  A  =  B )
) )
3015, 29jaoi 394 . . . . . . 7  |-  ( ( Z  =  1  \/  Z  e.  ( ZZ>= ` 
2 ) )  -> 
( ( A  e. 
Prime  /\  B  e.  Prime )  ->  ( ( Z  x.  A )  =  B  ->  A  =  B ) ) )
313, 30sylbi 207 . . . . . 6  |-  ( Z  e.  NN  ->  (
( A  e.  Prime  /\  B  e.  Prime )  ->  ( ( Z  x.  A )  =  B  ->  A  =  B ) ) )
32 oveq1 6657 . . . . . . . . 9  |-  ( Z  =  0  ->  ( Z  x.  A )  =  ( 0  x.  A ) )
3332eqeq1d 2624 . . . . . . . 8  |-  ( Z  =  0  ->  (
( Z  x.  A
)  =  B  <->  ( 0  x.  A )  =  B ) )
34 prmnn 15388 . . . . . . . . . . . . . 14  |-  ( A  e.  Prime  ->  A  e.  NN )
3534nnred 11035 . . . . . . . . . . . . 13  |-  ( A  e.  Prime  ->  A  e.  RR )
36 mul02lem2 10213 . . . . . . . . . . . . 13  |-  ( A  e.  RR  ->  (
0  x.  A )  =  0 )
3735, 36syl 17 . . . . . . . . . . . 12  |-  ( A  e.  Prime  ->  ( 0  x.  A )  =  0 )
3837adantr 481 . . . . . . . . . . 11  |-  ( ( A  e.  Prime  /\  B  e.  Prime )  ->  (
0  x.  A )  =  0 )
3938eqeq1d 2624 . . . . . . . . . 10  |-  ( ( A  e.  Prime  /\  B  e.  Prime )  ->  (
( 0  x.  A
)  =  B  <->  0  =  B ) )
40 prmnn 15388 . . . . . . . . . . . 12  |-  ( B  e.  Prime  ->  B  e.  NN )
41 elnnne0 11306 . . . . . . . . . . . . 13  |-  ( B  e.  NN  <->  ( B  e.  NN0  /\  B  =/=  0 ) )
42 eqneqall 2805 . . . . . . . . . . . . . . . 16  |-  ( B  =  0  ->  ( B  =/=  0  ->  A  =  B ) )
4342eqcoms 2630 . . . . . . . . . . . . . . 15  |-  ( 0  =  B  ->  ( B  =/=  0  ->  A  =  B ) )
4443com12 32 . . . . . . . . . . . . . 14  |-  ( B  =/=  0  ->  (
0  =  B  ->  A  =  B )
)
4544adantl 482 . . . . . . . . . . . . 13  |-  ( ( B  e.  NN0  /\  B  =/=  0 )  -> 
( 0  =  B  ->  A  =  B ) )
4641, 45sylbi 207 . . . . . . . . . . . 12  |-  ( B  e.  NN  ->  (
0  =  B  ->  A  =  B )
)
4740, 46syl 17 . . . . . . . . . . 11  |-  ( B  e.  Prime  ->  ( 0  =  B  ->  A  =  B ) )
4847adantl 482 . . . . . . . . . 10  |-  ( ( A  e.  Prime  /\  B  e.  Prime )  ->  (
0  =  B  ->  A  =  B )
)
4939, 48sylbid 230 . . . . . . . . 9  |-  ( ( A  e.  Prime  /\  B  e.  Prime )  ->  (
( 0  x.  A
)  =  B  ->  A  =  B )
)
5049com12 32 . . . . . . . 8  |-  ( ( 0  x.  A )  =  B  ->  (
( A  e.  Prime  /\  B  e.  Prime )  ->  A  =  B ) )
5133, 50syl6bi 243 . . . . . . 7  |-  ( Z  =  0  ->  (
( Z  x.  A
)  =  B  -> 
( ( A  e. 
Prime  /\  B  e.  Prime )  ->  A  =  B ) ) )
5251com23 86 . . . . . 6  |-  ( Z  =  0  ->  (
( A  e.  Prime  /\  B  e.  Prime )  ->  ( ( Z  x.  A )  =  B  ->  A  =  B ) ) )
5331, 52jaoi 394 . . . . 5  |-  ( ( Z  e.  NN  \/  Z  =  0 )  ->  ( ( A  e.  Prime  /\  B  e. 
Prime )  ->  ( ( Z  x.  A )  =  B  ->  A  =  B ) ) )
542, 53sylbi 207 . . . 4  |-  ( Z  e.  NN0  ->  ( ( A  e.  Prime  /\  B  e.  Prime )  ->  (
( Z  x.  A
)  =  B  ->  A  =  B )
) )
55 elnnz 11387 . . . . . 6  |-  ( -u Z  e.  NN  <->  ( -u Z  e.  ZZ  /\  0  <  -u Z ) )
56 lt0neg1 10534 . . . . . . . 8  |-  ( Z  e.  RR  ->  ( Z  <  0  <->  0  <  -u Z ) )
5734nngt0d 11064 . . . . . . . . . . . . . . 15  |-  ( A  e.  Prime  ->  0  < 
A )
5857adantr 481 . . . . . . . . . . . . . 14  |-  ( ( A  e.  Prime  /\  B  e.  Prime )  ->  0  <  A )
59 simpr 477 . . . . . . . . . . . . . 14  |-  ( ( Z  e.  RR  /\  Z  <  0 )  ->  Z  <  0 )
6058, 59anim12ci 591 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  Prime  /\  B  e.  Prime )  /\  ( Z  e.  RR  /\  Z  <  0 ) )  ->  ( Z  <  0  /\  0  < 
A ) )
6160orcd 407 . . . . . . . . . . . 12  |-  ( ( ( A  e.  Prime  /\  B  e.  Prime )  /\  ( Z  e.  RR  /\  Z  <  0 ) )  ->  ( ( Z  <  0  /\  0  <  A )  \/  (
0  <  Z  /\  A  <  0 ) ) )
62 simprl 794 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  Prime  /\  B  e.  Prime )  /\  ( Z  e.  RR  /\  Z  <  0 ) )  ->  Z  e.  RR )
6335adantr 481 . . . . . . . . . . . . . 14  |-  ( ( A  e.  Prime  /\  B  e.  Prime )  ->  A  e.  RR )
6463adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  Prime  /\  B  e.  Prime )  /\  ( Z  e.  RR  /\  Z  <  0 ) )  ->  A  e.  RR )
6562, 64mul2lt0bi 11936 . . . . . . . . . . . 12  |-  ( ( ( A  e.  Prime  /\  B  e.  Prime )  /\  ( Z  e.  RR  /\  Z  <  0 ) )  ->  ( ( Z  x.  A )  <  0  <->  ( ( Z  <  0  /\  0  <  A )  \/  (
0  <  Z  /\  A  <  0 ) ) ) )
6661, 65mpbird 247 . . . . . . . . . . 11  |-  ( ( ( A  e.  Prime  /\  B  e.  Prime )  /\  ( Z  e.  RR  /\  Z  <  0 ) )  ->  ( Z  x.  A )  <  0
)
6766ex 450 . . . . . . . . . 10  |-  ( ( A  e.  Prime  /\  B  e.  Prime )  ->  (
( Z  e.  RR  /\  Z  <  0 )  ->  ( Z  x.  A )  <  0
) )
68 breq1 4656 . . . . . . . . . . . . . 14  |-  ( ( Z  x.  A )  =  B  ->  (
( Z  x.  A
)  <  0  <->  B  <  0 ) )
6968adantl 482 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  Prime  /\  B  e.  Prime )  /\  ( Z  x.  A
)  =  B )  ->  ( ( Z  x.  A )  <  0  <->  B  <  0
) )
70 nnnn0 11299 . . . . . . . . . . . . . . . . 17  |-  ( B  e.  NN  ->  B  e.  NN0 )
71 nn0nlt0 11319 . . . . . . . . . . . . . . . . . 18  |-  ( B  e.  NN0  ->  -.  B  <  0 )
7271pm2.21d 118 . . . . . . . . . . . . . . . . 17  |-  ( B  e.  NN0  ->  ( B  <  0  ->  A  =  B ) )
7370, 72syl 17 . . . . . . . . . . . . . . . 16  |-  ( B  e.  NN  ->  ( B  <  0  ->  A  =  B ) )
7440, 73syl 17 . . . . . . . . . . . . . . 15  |-  ( B  e.  Prime  ->  ( B  <  0  ->  A  =  B ) )
7574adantl 482 . . . . . . . . . . . . . 14  |-  ( ( A  e.  Prime  /\  B  e.  Prime )  ->  ( B  <  0  ->  A  =  B ) )
7675adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  Prime  /\  B  e.  Prime )  /\  ( Z  x.  A
)  =  B )  ->  ( B  <  0  ->  A  =  B ) )
7769, 76sylbid 230 . . . . . . . . . . . 12  |-  ( ( ( A  e.  Prime  /\  B  e.  Prime )  /\  ( Z  x.  A
)  =  B )  ->  ( ( Z  x.  A )  <  0  ->  A  =  B ) )
7877ex 450 . . . . . . . . . . 11  |-  ( ( A  e.  Prime  /\  B  e.  Prime )  ->  (
( Z  x.  A
)  =  B  -> 
( ( Z  x.  A )  <  0  ->  A  =  B ) ) )
7978com23 86 . . . . . . . . . 10  |-  ( ( A  e.  Prime  /\  B  e.  Prime )  ->  (
( Z  x.  A
)  <  0  ->  ( ( Z  x.  A
)  =  B  ->  A  =  B )
) )
8067, 79syldc 48 . . . . . . . . 9  |-  ( ( Z  e.  RR  /\  Z  <  0 )  -> 
( ( A  e. 
Prime  /\  B  e.  Prime )  ->  ( ( Z  x.  A )  =  B  ->  A  =  B ) ) )
8180ex 450 . . . . . . . 8  |-  ( Z  e.  RR  ->  ( Z  <  0  ->  (
( A  e.  Prime  /\  B  e.  Prime )  ->  ( ( Z  x.  A )  =  B  ->  A  =  B ) ) ) )
8256, 81sylbird 250 . . . . . . 7  |-  ( Z  e.  RR  ->  (
0  <  -u Z  -> 
( ( A  e. 
Prime  /\  B  e.  Prime )  ->  ( ( Z  x.  A )  =  B  ->  A  =  B ) ) ) )
8382adantld 483 . . . . . 6  |-  ( Z  e.  RR  ->  (
( -u Z  e.  ZZ  /\  0  <  -u Z
)  ->  ( ( A  e.  Prime  /\  B  e.  Prime )  ->  (
( Z  x.  A
)  =  B  ->  A  =  B )
) ) )
8455, 83syl5bi 232 . . . . 5  |-  ( Z  e.  RR  ->  ( -u Z  e.  NN  ->  ( ( A  e.  Prime  /\  B  e.  Prime )  ->  ( ( Z  x.  A )  =  B  ->  A  =  B ) ) ) )
8584imp 445 . . . 4  |-  ( ( Z  e.  RR  /\  -u Z  e.  NN )  ->  ( ( A  e.  Prime  /\  B  e. 
Prime )  ->  ( ( Z  x.  A )  =  B  ->  A  =  B ) ) )
8654, 85jaoi 394 . . 3  |-  ( ( Z  e.  NN0  \/  ( Z  e.  RR  /\  -u Z  e.  NN ) )  ->  (
( A  e.  Prime  /\  B  e.  Prime )  ->  ( ( Z  x.  A )  =  B  ->  A  =  B ) ) )
871, 86sylbi 207 . 2  |-  ( Z  e.  ZZ  ->  (
( A  e.  Prime  /\  B  e.  Prime )  ->  ( ( Z  x.  A )  =  B  ->  A  =  B ) ) )
88873impib 1262 1  |-  ( ( Z  e.  ZZ  /\  A  e.  Prime  /\  B  e.  Prime )  ->  (
( Z  x.  A
)  =  B  ->  A  =  B )
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   RRcr 9935   0cc0 9936   1c1 9937    x. cmul 9941    < clt 10074   -ucneg 10267   NNcn 11020   2c2 11070   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   Primecprime 15385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-prm 15386
This theorem is referenced by:  zlmodzxznm  42286
  Copyright terms: Public domain W3C validator