MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metustid Structured version   Visualization version   Unicode version

Theorem metustid 22359
Description: The identity diagonal is included in all elements of the filter base generated by the metric  D. (Contributed by Thierry Arnoux, 22-Nov-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.)
Hypothesis
Ref Expression
metust.1  |-  F  =  ran  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a
) ) )
Assertion
Ref Expression
metustid  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  F )  ->  (  _I  |`  X )  C_  A )
Distinct variable groups:    D, a    X, a    A, a    F, a

Proof of Theorem metustid
Dummy variables  p  q are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relres 5426 . . 3  |-  Rel  (  _I  |`  X )
21a1i 11 . 2  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  F )  ->  Rel  (  _I  |`  X ) )
3 vex 3203 . . . . . . . . . . . . . . 15  |-  q  e. 
_V
43brres 5402 . . . . . . . . . . . . . 14  |-  ( p (  _I  |`  X ) q  <->  ( p  _I  q  /\  p  e.  X ) )
5 df-br 4654 . . . . . . . . . . . . . 14  |-  ( p (  _I  |`  X ) q  <->  <. p ,  q
>.  e.  (  _I  |`  X ) )
63ideq 5274 . . . . . . . . . . . . . . 15  |-  ( p  _I  q  <->  p  =  q )
76anbi1i 731 . . . . . . . . . . . . . 14  |-  ( ( p  _I  q  /\  p  e.  X )  <->  ( p  =  q  /\  p  e.  X )
)
84, 5, 73bitr3i 290 . . . . . . . . . . . . 13  |-  ( <.
p ,  q >.  e.  (  _I  |`  X )  <-> 
( p  =  q  /\  p  e.  X
) )
98biimpi 206 . . . . . . . . . . . 12  |-  ( <.
p ,  q >.  e.  (  _I  |`  X )  ->  ( p  =  q  /\  p  e.  X ) )
109ad2antlr 763 . . . . . . . . . . 11  |-  ( ( ( ( D  e.  (PsMet `  X )  /\  A  e.  F
)  /\  <. p ,  q >.  e.  (  _I  |`  X ) )  /\  a  e.  RR+ )  ->  ( p  =  q  /\  p  e.  X ) )
1110simpld 475 . . . . . . . . . 10  |-  ( ( ( ( D  e.  (PsMet `  X )  /\  A  e.  F
)  /\  <. p ,  q >.  e.  (  _I  |`  X ) )  /\  a  e.  RR+ )  ->  p  =  q )
12 df-ov 6653 . . . . . . . . . . 11  |-  ( p D p )  =  ( D `  <. p ,  p >. )
13 opeq2 4403 . . . . . . . . . . . 12  |-  ( p  =  q  ->  <. p ,  p >.  =  <. p ,  q >. )
1413fveq2d 6195 . . . . . . . . . . 11  |-  ( p  =  q  ->  ( D `  <. p ,  p >. )  =  ( D `  <. p ,  q >. )
)
1512, 14syl5eq 2668 . . . . . . . . . 10  |-  ( p  =  q  ->  (
p D p )  =  ( D `  <. p ,  q >.
) )
1611, 15syl 17 . . . . . . . . 9  |-  ( ( ( ( D  e.  (PsMet `  X )  /\  A  e.  F
)  /\  <. p ,  q >.  e.  (  _I  |`  X ) )  /\  a  e.  RR+ )  ->  ( p D p )  =  ( D `  <. p ,  q >. )
)
17 simplll 798 . . . . . . . . . 10  |-  ( ( ( ( D  e.  (PsMet `  X )  /\  A  e.  F
)  /\  <. p ,  q >.  e.  (  _I  |`  X ) )  /\  a  e.  RR+ )  ->  D  e.  (PsMet `  X ) )
1810simprd 479 . . . . . . . . . 10  |-  ( ( ( ( D  e.  (PsMet `  X )  /\  A  e.  F
)  /\  <. p ,  q >.  e.  (  _I  |`  X ) )  /\  a  e.  RR+ )  ->  p  e.  X
)
19 psmet0 22113 . . . . . . . . . 10  |-  ( ( D  e.  (PsMet `  X )  /\  p  e.  X )  ->  (
p D p )  =  0 )
2017, 18, 19syl2anc 693 . . . . . . . . 9  |-  ( ( ( ( D  e.  (PsMet `  X )  /\  A  e.  F
)  /\  <. p ,  q >.  e.  (  _I  |`  X ) )  /\  a  e.  RR+ )  ->  ( p D p )  =  0 )
2116, 20eqtr3d 2658 . . . . . . . 8  |-  ( ( ( ( D  e.  (PsMet `  X )  /\  A  e.  F
)  /\  <. p ,  q >.  e.  (  _I  |`  X ) )  /\  a  e.  RR+ )  ->  ( D `  <. p ,  q >.
)  =  0 )
22 0xr 10086 . . . . . . . . . . 11  |-  0  e.  RR*
2322a1i 11 . . . . . . . . . 10  |-  ( a  e.  RR+  ->  0  e. 
RR* )
24 rpxr 11840 . . . . . . . . . 10  |-  ( a  e.  RR+  ->  a  e. 
RR* )
25 rpgt0 11844 . . . . . . . . . 10  |-  ( a  e.  RR+  ->  0  < 
a )
26 lbico1 12228 . . . . . . . . . 10  |-  ( ( 0  e.  RR*  /\  a  e.  RR*  /\  0  < 
a )  ->  0  e.  ( 0 [,) a
) )
2723, 24, 25, 26syl3anc 1326 . . . . . . . . 9  |-  ( a  e.  RR+  ->  0  e.  ( 0 [,) a
) )
2827adantl 482 . . . . . . . 8  |-  ( ( ( ( D  e.  (PsMet `  X )  /\  A  e.  F
)  /\  <. p ,  q >.  e.  (  _I  |`  X ) )  /\  a  e.  RR+ )  ->  0  e.  ( 0 [,) a ) )
2921, 28eqeltrd 2701 . . . . . . 7  |-  ( ( ( ( D  e.  (PsMet `  X )  /\  A  e.  F
)  /\  <. p ,  q >.  e.  (  _I  |`  X ) )  /\  a  e.  RR+ )  ->  ( D `  <. p ,  q >.
)  e.  ( 0 [,) a ) )
30 psmetf 22111 . . . . . . . . . 10  |-  ( D  e.  (PsMet `  X
)  ->  D :
( X  X.  X
) --> RR* )
31 ffun 6048 . . . . . . . . . 10  |-  ( D : ( X  X.  X ) --> RR*  ->  Fun 
D )
3230, 31syl 17 . . . . . . . . 9  |-  ( D  e.  (PsMet `  X
)  ->  Fun  D )
3332ad3antrrr 766 . . . . . . . 8  |-  ( ( ( ( D  e.  (PsMet `  X )  /\  A  e.  F
)  /\  <. p ,  q >.  e.  (  _I  |`  X ) )  /\  a  e.  RR+ )  ->  Fun  D )
3411, 18eqeltrrd 2702 . . . . . . . . . 10  |-  ( ( ( ( D  e.  (PsMet `  X )  /\  A  e.  F
)  /\  <. p ,  q >.  e.  (  _I  |`  X ) )  /\  a  e.  RR+ )  ->  q  e.  X
)
35 opelxpi 5148 . . . . . . . . . 10  |-  ( ( p  e.  X  /\  q  e.  X )  -> 
<. p ,  q >.  e.  ( X  X.  X
) )
3618, 34, 35syl2anc 693 . . . . . . . . 9  |-  ( ( ( ( D  e.  (PsMet `  X )  /\  A  e.  F
)  /\  <. p ,  q >.  e.  (  _I  |`  X ) )  /\  a  e.  RR+ )  ->  <. p ,  q
>.  e.  ( X  X.  X ) )
37 fdm 6051 . . . . . . . . . . 11  |-  ( D : ( X  X.  X ) --> RR*  ->  dom 
D  =  ( X  X.  X ) )
3830, 37syl 17 . . . . . . . . . 10  |-  ( D  e.  (PsMet `  X
)  ->  dom  D  =  ( X  X.  X
) )
3938ad3antrrr 766 . . . . . . . . 9  |-  ( ( ( ( D  e.  (PsMet `  X )  /\  A  e.  F
)  /\  <. p ,  q >.  e.  (  _I  |`  X ) )  /\  a  e.  RR+ )  ->  dom  D  =  ( X  X.  X
) )
4036, 39eleqtrrd 2704 . . . . . . . 8  |-  ( ( ( ( D  e.  (PsMet `  X )  /\  A  e.  F
)  /\  <. p ,  q >.  e.  (  _I  |`  X ) )  /\  a  e.  RR+ )  ->  <. p ,  q
>.  e.  dom  D )
41 fvimacnv 6332 . . . . . . . 8  |-  ( ( Fun  D  /\  <. p ,  q >.  e.  dom  D )  ->  ( ( D `  <. p ,  q >. )  e.  ( 0 [,) a )  <->  <. p ,  q >.  e.  ( `' D "
( 0 [,) a
) ) ) )
4233, 40, 41syl2anc 693 . . . . . . 7  |-  ( ( ( ( D  e.  (PsMet `  X )  /\  A  e.  F
)  /\  <. p ,  q >.  e.  (  _I  |`  X ) )  /\  a  e.  RR+ )  ->  ( ( D `
 <. p ,  q
>. )  e.  (
0 [,) a )  <->  <. p ,  q >.  e.  ( `' D "
( 0 [,) a
) ) ) )
4329, 42mpbid 222 . . . . . 6  |-  ( ( ( ( D  e.  (PsMet `  X )  /\  A  e.  F
)  /\  <. p ,  q >.  e.  (  _I  |`  X ) )  /\  a  e.  RR+ )  ->  <. p ,  q
>.  e.  ( `' D " ( 0 [,) a
) ) )
4443adantr 481 . . . . 5  |-  ( ( ( ( ( D  e.  (PsMet `  X
)  /\  A  e.  F )  /\  <. p ,  q >.  e.  (  _I  |`  X )
)  /\  a  e.  RR+ )  /\  A  =  ( `' D "
( 0 [,) a
) ) )  ->  <. p ,  q >.  e.  ( `' D "
( 0 [,) a
) ) )
45 simpr 477 . . . . 5  |-  ( ( ( ( ( D  e.  (PsMet `  X
)  /\  A  e.  F )  /\  <. p ,  q >.  e.  (  _I  |`  X )
)  /\  a  e.  RR+ )  /\  A  =  ( `' D "
( 0 [,) a
) ) )  ->  A  =  ( `' D " ( 0 [,) a ) ) )
4644, 45eleqtrrd 2704 . . . 4  |-  ( ( ( ( ( D  e.  (PsMet `  X
)  /\  A  e.  F )  /\  <. p ,  q >.  e.  (  _I  |`  X )
)  /\  a  e.  RR+ )  /\  A  =  ( `' D "
( 0 [,) a
) ) )  ->  <. p ,  q >.  e.  A )
47 simplr 792 . . . . 5  |-  ( ( ( D  e.  (PsMet `  X )  /\  A  e.  F )  /\  <. p ,  q >.  e.  (  _I  |`  X )
)  ->  A  e.  F )
48 metust.1 . . . . . . 7  |-  F  =  ran  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a
) ) )
4948metustel 22355 . . . . . 6  |-  ( D  e.  (PsMet `  X
)  ->  ( A  e.  F  <->  E. a  e.  RR+  A  =  ( `' D " ( 0 [,) a
) ) ) )
5049ad2antrr 762 . . . . 5  |-  ( ( ( D  e.  (PsMet `  X )  /\  A  e.  F )  /\  <. p ,  q >.  e.  (  _I  |`  X )
)  ->  ( A  e.  F  <->  E. a  e.  RR+  A  =  ( `' D " ( 0 [,) a
) ) ) )
5147, 50mpbid 222 . . . 4  |-  ( ( ( D  e.  (PsMet `  X )  /\  A  e.  F )  /\  <. p ,  q >.  e.  (  _I  |`  X )
)  ->  E. a  e.  RR+  A  =  ( `' D " ( 0 [,) a ) ) )
5246, 51r19.29a 3078 . . 3  |-  ( ( ( D  e.  (PsMet `  X )  /\  A  e.  F )  /\  <. p ,  q >.  e.  (  _I  |`  X )
)  ->  <. p ,  q >.  e.  A
)
5352ex 450 . 2  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  F )  ->  ( <. p ,  q >.  e.  (  _I  |`  X )  ->  <. p ,  q
>.  e.  A ) )
542, 53relssdv 5212 1  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  F )  ->  (  _I  |`  X )  C_  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   E.wrex 2913    C_ wss 3574   <.cop 4183   class class class wbr 4653    |-> cmpt 4729    _I cid 5023    X. cxp 5112   `'ccnv 5113   dom cdm 5114   ran crn 5115    |` cres 5116   "cima 5117   Rel wrel 5119   Fun wfun 5882   -->wf 5884   ` cfv 5888  (class class class)co 6650   0cc0 9936   RR*cxr 10073    < clt 10074   RR+crp 11832   [,)cico 12177  PsMetcpsmet 19730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-i2m1 10004  ax-1ne0 10005  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-rp 11833  df-ico 12181  df-psmet 19738
This theorem is referenced by:  metustfbas  22362  metust  22363
  Copyright terms: Public domain W3C validator