| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > metust | Structured version Visualization version Unicode version | ||
| Description: The uniform structure
generated by a metric |
| Ref | Expression |
|---|---|
| metust.1 |
|
| Ref | Expression |
|---|---|
| metust |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metust.1 |
. . . 4
| |
| 2 | 1 | metustfbas 22362 |
. . 3
|
| 3 | fgcl 21682 |
. . 3
| |
| 4 | filsspw 21655 |
. . 3
| |
| 5 | 2, 3, 4 | 3syl 18 |
. 2
|
| 6 | filtop 21659 |
. . 3
| |
| 7 | 2, 3, 6 | 3syl 18 |
. 2
|
| 8 | 2, 3 | syl 17 |
. . . . . . . 8
|
| 9 | 8 | ad3antrrr 766 |
. . . . . . 7
|
| 10 | simpllr 799 |
. . . . . . 7
| |
| 11 | simplr 792 |
. . . . . . . 8
| |
| 12 | 11 | elpwid 4170 |
. . . . . . 7
|
| 13 | simpr 477 |
. . . . . . 7
| |
| 14 | filss 21657 |
. . . . . . 7
| |
| 15 | 9, 10, 12, 13, 14 | syl13anc 1328 |
. . . . . 6
|
| 16 | 15 | ex 450 |
. . . . 5
|
| 17 | 16 | ralrimiva 2966 |
. . . 4
|
| 18 | 8 | ad2antrr 762 |
. . . . . 6
|
| 19 | simplr 792 |
. . . . . 6
| |
| 20 | simpr 477 |
. . . . . 6
| |
| 21 | filin 21658 |
. . . . . 6
| |
| 22 | 18, 19, 20, 21 | syl3anc 1326 |
. . . . 5
|
| 23 | 22 | ralrimiva 2966 |
. . . 4
|
| 24 | 1 | metustid 22359 |
. . . . . . . 8
|
| 25 | 24 | ad5ant24 1305 |
. . . . . . 7
|
| 26 | simpr 477 |
. . . . . . 7
| |
| 27 | 25, 26 | sstrd 3613 |
. . . . . 6
|
| 28 | elfg 21675 |
. . . . . . . . 9
| |
| 29 | 28 | biimpa 501 |
. . . . . . . 8
|
| 30 | 29 | simprd 479 |
. . . . . . 7
|
| 31 | 2, 30 | sylan 488 |
. . . . . 6
|
| 32 | 27, 31 | r19.29a 3078 |
. . . . 5
|
| 33 | 8 | ad3antrrr 766 |
. . . . . . 7
|
| 34 | 2 | adantr 481 |
. . . . . . . . . 10
|
| 35 | ssfg 21676 |
. . . . . . . . . 10
| |
| 36 | 34, 35 | syl 17 |
. . . . . . . . 9
|
| 37 | 36 | ad2antrr 762 |
. . . . . . . 8
|
| 38 | simplr 792 |
. . . . . . . 8
| |
| 39 | 37, 38 | sseldd 3604 |
. . . . . . 7
|
| 40 | 29 | simpld 475 |
. . . . . . . . . 10
|
| 41 | 2, 40 | sylan 488 |
. . . . . . . . 9
|
| 42 | 41 | ad2antrr 762 |
. . . . . . . 8
|
| 43 | cnvss 5294 |
. . . . . . . . 9
| |
| 44 | cnvxp 5551 |
. . . . . . . . 9
| |
| 45 | 43, 44 | syl6sseq 3651 |
. . . . . . . 8
|
| 46 | 42, 45 | syl 17 |
. . . . . . 7
|
| 47 | 1 | metustsym 22360 |
. . . . . . . . 9
|
| 48 | 47 | ad5ant24 1305 |
. . . . . . . 8
|
| 49 | cnvss 5294 |
. . . . . . . . 9
| |
| 50 | 49 | adantl 482 |
. . . . . . . 8
|
| 51 | 48, 50 | eqsstr3d 3640 |
. . . . . . 7
|
| 52 | filss 21657 |
. . . . . . 7
| |
| 53 | 33, 39, 46, 51, 52 | syl13anc 1328 |
. . . . . 6
|
| 54 | 53, 31 | r19.29a 3078 |
. . . . 5
|
| 55 | 1 | metustexhalf 22361 |
. . . . . . . . 9
|
| 56 | 55 | ad4ant13 1292 |
. . . . . . . 8
|
| 57 | r19.41v 3089 |
. . . . . . . . 9
| |
| 58 | sstr 3611 |
. . . . . . . . . 10
| |
| 59 | 58 | reximi 3011 |
. . . . . . . . 9
|
| 60 | 57, 59 | sylbir 225 |
. . . . . . . 8
|
| 61 | 56, 26, 60 | syl2anc 693 |
. . . . . . 7
|
| 62 | 61, 31 | r19.29a 3078 |
. . . . . 6
|
| 63 | ssrexv 3667 |
. . . . . 6
| |
| 64 | 36, 62, 63 | sylc 65 |
. . . . 5
|
| 65 | 32, 54, 64 | 3jca 1242 |
. . . 4
|
| 66 | 17, 23, 65 | 3jca 1242 |
. . 3
|
| 67 | 66 | ralrimiva 2966 |
. 2
|
| 68 | elfvex 6221 |
. . . 4
| |
| 69 | 68 | adantl 482 |
. . 3
|
| 70 | isust 22007 |
. . 3
| |
| 71 | 69, 70 | syl 17 |
. 2
|
| 72 | 5, 7, 67, 71 | mpbir3and 1245 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-po 5035 df-so 5036 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-2 11079 df-rp 11833 df-xneg 11946 df-xadd 11947 df-xmul 11948 df-ico 12181 df-psmet 19738 df-fbas 19743 df-fg 19744 df-fil 21650 df-ust 22004 |
| This theorem is referenced by: cfilucfil 22364 metuust 22365 metucn 22376 |
| Copyright terms: Public domain | W3C validator |