Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mgmhmlin Structured version   Visualization version   Unicode version

Theorem mgmhmlin 41786
Description: A magma homomorphism preserves the binary operation. (Contributed by AV, 25-Feb-2020.)
Hypotheses
Ref Expression
mgmhmlin.b  |-  B  =  ( Base `  S
)
mgmhmlin.p  |-  .+  =  ( +g  `  S )
mgmhmlin.q  |-  .+^  =  ( +g  `  T )
Assertion
Ref Expression
mgmhmlin  |-  ( ( F  e.  ( S MgmHom  T )  /\  X  e.  B  /\  Y  e.  B )  ->  ( F `  ( X  .+  Y ) )  =  ( ( F `  X )  .+^  ( F `
 Y ) ) )

Proof of Theorem mgmhmlin
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mgmhmlin.b . . . 4  |-  B  =  ( Base `  S
)
2 eqid 2622 . . . 4  |-  ( Base `  T )  =  (
Base `  T )
3 mgmhmlin.p . . . 4  |-  .+  =  ( +g  `  S )
4 mgmhmlin.q . . . 4  |-  .+^  =  ( +g  `  T )
51, 2, 3, 4ismgmhm 41783 . . 3  |-  ( F  e.  ( S MgmHom  T
)  <->  ( ( S  e. Mgm  /\  T  e. Mgm )  /\  ( F : B
--> ( Base `  T
)  /\  A. x  e.  B  A. y  e.  B  ( F `  ( x  .+  y
) )  =  ( ( F `  x
)  .+^  ( F `  y ) ) ) ) )
6 oveq1 6657 . . . . . . . 8  |-  ( x  =  X  ->  (
x  .+  y )  =  ( X  .+  y ) )
76fveq2d 6195 . . . . . . 7  |-  ( x  =  X  ->  ( F `  ( x  .+  y ) )  =  ( F `  ( X  .+  y ) ) )
8 fveq2 6191 . . . . . . . 8  |-  ( x  =  X  ->  ( F `  x )  =  ( F `  X ) )
98oveq1d 6665 . . . . . . 7  |-  ( x  =  X  ->  (
( F `  x
)  .+^  ( F `  y ) )  =  ( ( F `  X )  .+^  ( F `
 y ) ) )
107, 9eqeq12d 2637 . . . . . 6  |-  ( x  =  X  ->  (
( F `  (
x  .+  y )
)  =  ( ( F `  x ) 
.+^  ( F `  y ) )  <->  ( F `  ( X  .+  y
) )  =  ( ( F `  X
)  .+^  ( F `  y ) ) ) )
11 oveq2 6658 . . . . . . . 8  |-  ( y  =  Y  ->  ( X  .+  y )  =  ( X  .+  Y
) )
1211fveq2d 6195 . . . . . . 7  |-  ( y  =  Y  ->  ( F `  ( X  .+  y ) )  =  ( F `  ( X  .+  Y ) ) )
13 fveq2 6191 . . . . . . . 8  |-  ( y  =  Y  ->  ( F `  y )  =  ( F `  Y ) )
1413oveq2d 6666 . . . . . . 7  |-  ( y  =  Y  ->  (
( F `  X
)  .+^  ( F `  y ) )  =  ( ( F `  X )  .+^  ( F `
 Y ) ) )
1512, 14eqeq12d 2637 . . . . . 6  |-  ( y  =  Y  ->  (
( F `  ( X  .+  y ) )  =  ( ( F `
 X )  .+^  ( F `  y ) )  <->  ( F `  ( X  .+  Y ) )  =  ( ( F `  X ) 
.+^  ( F `  Y ) ) ) )
1610, 15rspc2v 3322 . . . . 5  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  ( A. x  e.  B  A. y  e.  B  ( F `  ( x  .+  y ) )  =  ( ( F `  x ) 
.+^  ( F `  y ) )  -> 
( F `  ( X  .+  Y ) )  =  ( ( F `
 X )  .+^  ( F `  Y ) ) ) )
1716com12 32 . . . 4  |-  ( A. x  e.  B  A. y  e.  B  ( F `  ( x  .+  y ) )  =  ( ( F `  x )  .+^  ( F `
 y ) )  ->  ( ( X  e.  B  /\  Y  e.  B )  ->  ( F `  ( X  .+  Y ) )  =  ( ( F `  X )  .+^  ( F `
 Y ) ) ) )
1817ad2antll 765 . . 3  |-  ( ( ( S  e. Mgm  /\  T  e. Mgm )  /\  ( F : B --> ( Base `  T )  /\  A. x  e.  B  A. y  e.  B  ( F `  ( x  .+  y ) )  =  ( ( F `  x )  .+^  ( F `
 y ) ) ) )  ->  (
( X  e.  B  /\  Y  e.  B
)  ->  ( F `  ( X  .+  Y
) )  =  ( ( F `  X
)  .+^  ( F `  Y ) ) ) )
195, 18sylbi 207 . 2  |-  ( F  e.  ( S MgmHom  T
)  ->  ( ( X  e.  B  /\  Y  e.  B )  ->  ( F `  ( X  .+  Y ) )  =  ( ( F `
 X )  .+^  ( F `  Y ) ) ) )
20193impib 1262 1  |-  ( ( F  e.  ( S MgmHom  T )  /\  X  e.  B  /\  Y  e.  B )  ->  ( F `  ( X  .+  Y ) )  =  ( ( F `  X )  .+^  ( F `
 Y ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   -->wf 5884   ` cfv 5888  (class class class)co 6650   Basecbs 15857   +g cplusg 15941  Mgmcmgm 17240   MgmHom cmgmhm 41777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-mgmhm 41779
This theorem is referenced by:  mgmhmf1o  41787  resmgmhm  41798  resmgmhm2  41799  resmgmhm2b  41800  mgmhmco  41801  mgmhmima  41802  mgmhmeql  41803
  Copyright terms: Public domain W3C validator