Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mgmhmima Structured version   Visualization version   Unicode version

Theorem mgmhmima 41802
Description: The homomorphic image of a submagma is a submagma. (Contributed by AV, 27-Feb-2020.)
Assertion
Ref Expression
mgmhmima  |-  ( ( F  e.  ( M MgmHom  N )  /\  X  e.  (SubMgm `  M )
)  ->  ( F " X )  e.  (SubMgm `  N ) )

Proof of Theorem mgmhmima
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imassrn 5477 . . 3  |-  ( F
" X )  C_  ran  F
2 eqid 2622 . . . . . 6  |-  ( Base `  M )  =  (
Base `  M )
3 eqid 2622 . . . . . 6  |-  ( Base `  N )  =  (
Base `  N )
42, 3mgmhmf 41784 . . . . 5  |-  ( F  e.  ( M MgmHom  N
)  ->  F :
( Base `  M ) --> ( Base `  N )
)
54adantr 481 . . . 4  |-  ( ( F  e.  ( M MgmHom  N )  /\  X  e.  (SubMgm `  M )
)  ->  F :
( Base `  M ) --> ( Base `  N )
)
6 frn 6053 . . . 4  |-  ( F : ( Base `  M
) --> ( Base `  N
)  ->  ran  F  C_  ( Base `  N )
)
75, 6syl 17 . . 3  |-  ( ( F  e.  ( M MgmHom  N )  /\  X  e.  (SubMgm `  M )
)  ->  ran  F  C_  ( Base `  N )
)
81, 7syl5ss 3614 . 2  |-  ( ( F  e.  ( M MgmHom  N )  /\  X  e.  (SubMgm `  M )
)  ->  ( F " X )  C_  ( Base `  N ) )
9 simpll 790 . . . . . . . . 9  |-  ( ( ( F  e.  ( M MgmHom  N )  /\  X  e.  (SubMgm `  M
) )  /\  (
z  e.  X  /\  x  e.  X )
)  ->  F  e.  ( M MgmHom  N ) )
102submgmss 41792 . . . . . . . . . . . 12  |-  ( X  e.  (SubMgm `  M
)  ->  X  C_  ( Base `  M ) )
1110adantl 482 . . . . . . . . . . 11  |-  ( ( F  e.  ( M MgmHom  N )  /\  X  e.  (SubMgm `  M )
)  ->  X  C_  ( Base `  M ) )
1211adantr 481 . . . . . . . . . 10  |-  ( ( ( F  e.  ( M MgmHom  N )  /\  X  e.  (SubMgm `  M
) )  /\  (
z  e.  X  /\  x  e.  X )
)  ->  X  C_  ( Base `  M ) )
13 simprl 794 . . . . . . . . . 10  |-  ( ( ( F  e.  ( M MgmHom  N )  /\  X  e.  (SubMgm `  M
) )  /\  (
z  e.  X  /\  x  e.  X )
)  ->  z  e.  X )
1412, 13sseldd 3604 . . . . . . . . 9  |-  ( ( ( F  e.  ( M MgmHom  N )  /\  X  e.  (SubMgm `  M
) )  /\  (
z  e.  X  /\  x  e.  X )
)  ->  z  e.  ( Base `  M )
)
15 simprr 796 . . . . . . . . . 10  |-  ( ( ( F  e.  ( M MgmHom  N )  /\  X  e.  (SubMgm `  M
) )  /\  (
z  e.  X  /\  x  e.  X )
)  ->  x  e.  X )
1612, 15sseldd 3604 . . . . . . . . 9  |-  ( ( ( F  e.  ( M MgmHom  N )  /\  X  e.  (SubMgm `  M
) )  /\  (
z  e.  X  /\  x  e.  X )
)  ->  x  e.  ( Base `  M )
)
17 eqid 2622 . . . . . . . . . 10  |-  ( +g  `  M )  =  ( +g  `  M )
18 eqid 2622 . . . . . . . . . 10  |-  ( +g  `  N )  =  ( +g  `  N )
192, 17, 18mgmhmlin 41786 . . . . . . . . 9  |-  ( ( F  e.  ( M MgmHom  N )  /\  z  e.  ( Base `  M
)  /\  x  e.  ( Base `  M )
)  ->  ( F `  ( z ( +g  `  M ) x ) )  =  ( ( F `  z ) ( +g  `  N
) ( F `  x ) ) )
209, 14, 16, 19syl3anc 1326 . . . . . . . 8  |-  ( ( ( F  e.  ( M MgmHom  N )  /\  X  e.  (SubMgm `  M
) )  /\  (
z  e.  X  /\  x  e.  X )
)  ->  ( F `  ( z ( +g  `  M ) x ) )  =  ( ( F `  z ) ( +g  `  N
) ( F `  x ) ) )
21 ffn 6045 . . . . . . . . . . 11  |-  ( F : ( Base `  M
) --> ( Base `  N
)  ->  F  Fn  ( Base `  M )
)
225, 21syl 17 . . . . . . . . . 10  |-  ( ( F  e.  ( M MgmHom  N )  /\  X  e.  (SubMgm `  M )
)  ->  F  Fn  ( Base `  M )
)
2322adantr 481 . . . . . . . . 9  |-  ( ( ( F  e.  ( M MgmHom  N )  /\  X  e.  (SubMgm `  M
) )  /\  (
z  e.  X  /\  x  e.  X )
)  ->  F  Fn  ( Base `  M )
)
2417submgmcl 41794 . . . . . . . . . . 11  |-  ( ( X  e.  (SubMgm `  M )  /\  z  e.  X  /\  x  e.  X )  ->  (
z ( +g  `  M
) x )  e.  X )
25243expb 1266 . . . . . . . . . 10  |-  ( ( X  e.  (SubMgm `  M )  /\  (
z  e.  X  /\  x  e.  X )
)  ->  ( z
( +g  `  M ) x )  e.  X
)
2625adantll 750 . . . . . . . . 9  |-  ( ( ( F  e.  ( M MgmHom  N )  /\  X  e.  (SubMgm `  M
) )  /\  (
z  e.  X  /\  x  e.  X )
)  ->  ( z
( +g  `  M ) x )  e.  X
)
27 fnfvima 6496 . . . . . . . . 9  |-  ( ( F  Fn  ( Base `  M )  /\  X  C_  ( Base `  M
)  /\  ( z
( +g  `  M ) x )  e.  X
)  ->  ( F `  ( z ( +g  `  M ) x ) )  e.  ( F
" X ) )
2823, 12, 26, 27syl3anc 1326 . . . . . . . 8  |-  ( ( ( F  e.  ( M MgmHom  N )  /\  X  e.  (SubMgm `  M
) )  /\  (
z  e.  X  /\  x  e.  X )
)  ->  ( F `  ( z ( +g  `  M ) x ) )  e.  ( F
" X ) )
2920, 28eqeltrrd 2702 . . . . . . 7  |-  ( ( ( F  e.  ( M MgmHom  N )  /\  X  e.  (SubMgm `  M
) )  /\  (
z  e.  X  /\  x  e.  X )
)  ->  ( ( F `  z )
( +g  `  N ) ( F `  x
) )  e.  ( F " X ) )
3029anassrs 680 . . . . . 6  |-  ( ( ( ( F  e.  ( M MgmHom  N )  /\  X  e.  (SubMgm `  M ) )  /\  z  e.  X )  /\  x  e.  X
)  ->  ( ( F `  z )
( +g  `  N ) ( F `  x
) )  e.  ( F " X ) )
3130ralrimiva 2966 . . . . 5  |-  ( ( ( F  e.  ( M MgmHom  N )  /\  X  e.  (SubMgm `  M
) )  /\  z  e.  X )  ->  A. x  e.  X  ( ( F `  z )
( +g  `  N ) ( F `  x
) )  e.  ( F " X ) )
32 oveq2 6658 . . . . . . . . 9  |-  ( y  =  ( F `  x )  ->  (
( F `  z
) ( +g  `  N
) y )  =  ( ( F `  z ) ( +g  `  N ) ( F `
 x ) ) )
3332eleq1d 2686 . . . . . . . 8  |-  ( y  =  ( F `  x )  ->  (
( ( F `  z ) ( +g  `  N ) y )  e.  ( F " X )  <->  ( ( F `  z )
( +g  `  N ) ( F `  x
) )  e.  ( F " X ) ) )
3433ralima 6498 . . . . . . 7  |-  ( ( F  Fn  ( Base `  M )  /\  X  C_  ( Base `  M
) )  ->  ( A. y  e.  ( F " X ) ( ( F `  z
) ( +g  `  N
) y )  e.  ( F " X
)  <->  A. x  e.  X  ( ( F `  z ) ( +g  `  N ) ( F `
 x ) )  e.  ( F " X ) ) )
3522, 11, 34syl2anc 693 . . . . . 6  |-  ( ( F  e.  ( M MgmHom  N )  /\  X  e.  (SubMgm `  M )
)  ->  ( A. y  e.  ( F " X ) ( ( F `  z ) ( +g  `  N
) y )  e.  ( F " X
)  <->  A. x  e.  X  ( ( F `  z ) ( +g  `  N ) ( F `
 x ) )  e.  ( F " X ) ) )
3635adantr 481 . . . . 5  |-  ( ( ( F  e.  ( M MgmHom  N )  /\  X  e.  (SubMgm `  M
) )  /\  z  e.  X )  ->  ( A. y  e.  ( F " X ) ( ( F `  z
) ( +g  `  N
) y )  e.  ( F " X
)  <->  A. x  e.  X  ( ( F `  z ) ( +g  `  N ) ( F `
 x ) )  e.  ( F " X ) ) )
3731, 36mpbird 247 . . . 4  |-  ( ( ( F  e.  ( M MgmHom  N )  /\  X  e.  (SubMgm `  M
) )  /\  z  e.  X )  ->  A. y  e.  ( F " X
) ( ( F `
 z ) ( +g  `  N ) y )  e.  ( F " X ) )
3837ralrimiva 2966 . . 3  |-  ( ( F  e.  ( M MgmHom  N )  /\  X  e.  (SubMgm `  M )
)  ->  A. z  e.  X  A. y  e.  ( F " X
) ( ( F `
 z ) ( +g  `  N ) y )  e.  ( F " X ) )
39 oveq1 6657 . . . . . . 7  |-  ( x  =  ( F `  z )  ->  (
x ( +g  `  N
) y )  =  ( ( F `  z ) ( +g  `  N ) y ) )
4039eleq1d 2686 . . . . . 6  |-  ( x  =  ( F `  z )  ->  (
( x ( +g  `  N ) y )  e.  ( F " X )  <->  ( ( F `  z )
( +g  `  N ) y )  e.  ( F " X ) ) )
4140ralbidv 2986 . . . . 5  |-  ( x  =  ( F `  z )  ->  ( A. y  e.  ( F " X ) ( x ( +g  `  N
) y )  e.  ( F " X
)  <->  A. y  e.  ( F " X ) ( ( F `  z ) ( +g  `  N ) y )  e.  ( F " X ) ) )
4241ralima 6498 . . . 4  |-  ( ( F  Fn  ( Base `  M )  /\  X  C_  ( Base `  M
) )  ->  ( A. x  e.  ( F " X ) A. y  e.  ( F " X ) ( x ( +g  `  N
) y )  e.  ( F " X
)  <->  A. z  e.  X  A. y  e.  ( F " X ) ( ( F `  z
) ( +g  `  N
) y )  e.  ( F " X
) ) )
4322, 11, 42syl2anc 693 . . 3  |-  ( ( F  e.  ( M MgmHom  N )  /\  X  e.  (SubMgm `  M )
)  ->  ( A. x  e.  ( F " X ) A. y  e.  ( F " X
) ( x ( +g  `  N ) y )  e.  ( F " X )  <->  A. z  e.  X  A. y  e.  ( F " X ) ( ( F `  z
) ( +g  `  N
) y )  e.  ( F " X
) ) )
4438, 43mpbird 247 . 2  |-  ( ( F  e.  ( M MgmHom  N )  /\  X  e.  (SubMgm `  M )
)  ->  A. x  e.  ( F " X
) A. y  e.  ( F " X
) ( x ( +g  `  N ) y )  e.  ( F " X ) )
45 mgmhmrcl 41781 . . . . 5  |-  ( F  e.  ( M MgmHom  N
)  ->  ( M  e. Mgm  /\  N  e. Mgm )
)
4645simprd 479 . . . 4  |-  ( F  e.  ( M MgmHom  N
)  ->  N  e. Mgm )
4746adantr 481 . . 3  |-  ( ( F  e.  ( M MgmHom  N )  /\  X  e.  (SubMgm `  M )
)  ->  N  e. Mgm )
483, 18issubmgm 41789 . . 3  |-  ( N  e. Mgm  ->  ( ( F
" X )  e.  (SubMgm `  N )  <->  ( ( F " X
)  C_  ( Base `  N )  /\  A. x  e.  ( F " X ) A. y  e.  ( F " X
) ( x ( +g  `  N ) y )  e.  ( F " X ) ) ) )
4947, 48syl 17 . 2  |-  ( ( F  e.  ( M MgmHom  N )  /\  X  e.  (SubMgm `  M )
)  ->  ( ( F " X )  e.  (SubMgm `  N )  <->  ( ( F " X
)  C_  ( Base `  N )  /\  A. x  e.  ( F " X ) A. y  e.  ( F " X
) ( x ( +g  `  N ) y )  e.  ( F " X ) ) ) )
508, 44, 49mpbir2and 957 1  |-  ( ( F  e.  ( M MgmHom  N )  /\  X  e.  (SubMgm `  M )
)  ->  ( F " X )  e.  (SubMgm `  N ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912    C_ wss 3574   ran crn 5115   "cima 5117    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   Basecbs 15857   +g cplusg 15941  Mgmcmgm 17240   MgmHom cmgmhm 41777  SubMgmcsubmgm 41778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mgm 17242  df-mgmhm 41779  df-submgm 41780
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator