Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  resmgmhm Structured version   Visualization version   Unicode version

Theorem resmgmhm 41798
Description: Restriction of a magma homomorphism to a submagma is a homomorphism. (Contributed by AV, 26-Feb-2020.)
Hypothesis
Ref Expression
resmgmhm.u  |-  U  =  ( Ss  X )
Assertion
Ref Expression
resmgmhm  |-  ( ( F  e.  ( S MgmHom  T )  /\  X  e.  (SubMgm `  S )
)  ->  ( F  |`  X )  e.  ( U MgmHom  T ) )

Proof of Theorem resmgmhm
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mgmhmrcl 41781 . . . 4  |-  ( F  e.  ( S MgmHom  T
)  ->  ( S  e. Mgm  /\  T  e. Mgm )
)
21simprd 479 . . 3  |-  ( F  e.  ( S MgmHom  T
)  ->  T  e. Mgm )
3 resmgmhm.u . . . 4  |-  U  =  ( Ss  X )
43submgmmgm 41795 . . 3  |-  ( X  e.  (SubMgm `  S
)  ->  U  e. Mgm )
52, 4anim12ci 591 . 2  |-  ( ( F  e.  ( S MgmHom  T )  /\  X  e.  (SubMgm `  S )
)  ->  ( U  e. Mgm  /\  T  e. Mgm )
)
6 eqid 2622 . . . . . 6  |-  ( Base `  S )  =  (
Base `  S )
7 eqid 2622 . . . . . 6  |-  ( Base `  T )  =  (
Base `  T )
86, 7mgmhmf 41784 . . . . 5  |-  ( F  e.  ( S MgmHom  T
)  ->  F :
( Base `  S ) --> ( Base `  T )
)
96submgmss 41792 . . . . 5  |-  ( X  e.  (SubMgm `  S
)  ->  X  C_  ( Base `  S ) )
10 fssres 6070 . . . . 5  |-  ( ( F : ( Base `  S ) --> ( Base `  T )  /\  X  C_  ( Base `  S
) )  ->  ( F  |`  X ) : X --> ( Base `  T
) )
118, 9, 10syl2an 494 . . . 4  |-  ( ( F  e.  ( S MgmHom  T )  /\  X  e.  (SubMgm `  S )
)  ->  ( F  |`  X ) : X --> ( Base `  T )
)
129adantl 482 . . . . . 6  |-  ( ( F  e.  ( S MgmHom  T )  /\  X  e.  (SubMgm `  S )
)  ->  X  C_  ( Base `  S ) )
133, 6ressbas2 15931 . . . . . 6  |-  ( X 
C_  ( Base `  S
)  ->  X  =  ( Base `  U )
)
1412, 13syl 17 . . . . 5  |-  ( ( F  e.  ( S MgmHom  T )  /\  X  e.  (SubMgm `  S )
)  ->  X  =  ( Base `  U )
)
1514feq2d 6031 . . . 4  |-  ( ( F  e.  ( S MgmHom  T )  /\  X  e.  (SubMgm `  S )
)  ->  ( ( F  |`  X ) : X --> ( Base `  T
)  <->  ( F  |`  X ) : (
Base `  U ) --> ( Base `  T )
) )
1611, 15mpbid 222 . . 3  |-  ( ( F  e.  ( S MgmHom  T )  /\  X  e.  (SubMgm `  S )
)  ->  ( F  |`  X ) : (
Base `  U ) --> ( Base `  T )
)
17 simpll 790 . . . . . . 7  |-  ( ( ( F  e.  ( S MgmHom  T )  /\  X  e.  (SubMgm `  S
) )  /\  (
x  e.  X  /\  y  e.  X )
)  ->  F  e.  ( S MgmHom  T ) )
189ad2antlr 763 . . . . . . . 8  |-  ( ( ( F  e.  ( S MgmHom  T )  /\  X  e.  (SubMgm `  S
) )  /\  (
x  e.  X  /\  y  e.  X )
)  ->  X  C_  ( Base `  S ) )
19 simprl 794 . . . . . . . 8  |-  ( ( ( F  e.  ( S MgmHom  T )  /\  X  e.  (SubMgm `  S
) )  /\  (
x  e.  X  /\  y  e.  X )
)  ->  x  e.  X )
2018, 19sseldd 3604 . . . . . . 7  |-  ( ( ( F  e.  ( S MgmHom  T )  /\  X  e.  (SubMgm `  S
) )  /\  (
x  e.  X  /\  y  e.  X )
)  ->  x  e.  ( Base `  S )
)
21 simprr 796 . . . . . . . 8  |-  ( ( ( F  e.  ( S MgmHom  T )  /\  X  e.  (SubMgm `  S
) )  /\  (
x  e.  X  /\  y  e.  X )
)  ->  y  e.  X )
2218, 21sseldd 3604 . . . . . . 7  |-  ( ( ( F  e.  ( S MgmHom  T )  /\  X  e.  (SubMgm `  S
) )  /\  (
x  e.  X  /\  y  e.  X )
)  ->  y  e.  ( Base `  S )
)
23 eqid 2622 . . . . . . . 8  |-  ( +g  `  S )  =  ( +g  `  S )
24 eqid 2622 . . . . . . . 8  |-  ( +g  `  T )  =  ( +g  `  T )
256, 23, 24mgmhmlin 41786 . . . . . . 7  |-  ( ( F  e.  ( S MgmHom  T )  /\  x  e.  ( Base `  S
)  /\  y  e.  ( Base `  S )
)  ->  ( F `  ( x ( +g  `  S ) y ) )  =  ( ( F `  x ) ( +g  `  T
) ( F `  y ) ) )
2617, 20, 22, 25syl3anc 1326 . . . . . 6  |-  ( ( ( F  e.  ( S MgmHom  T )  /\  X  e.  (SubMgm `  S
) )  /\  (
x  e.  X  /\  y  e.  X )
)  ->  ( F `  ( x ( +g  `  S ) y ) )  =  ( ( F `  x ) ( +g  `  T
) ( F `  y ) ) )
2723submgmcl 41794 . . . . . . . . 9  |-  ( ( X  e.  (SubMgm `  S )  /\  x  e.  X  /\  y  e.  X )  ->  (
x ( +g  `  S
) y )  e.  X )
28273expb 1266 . . . . . . . 8  |-  ( ( X  e.  (SubMgm `  S )  /\  (
x  e.  X  /\  y  e.  X )
)  ->  ( x
( +g  `  S ) y )  e.  X
)
2928adantll 750 . . . . . . 7  |-  ( ( ( F  e.  ( S MgmHom  T )  /\  X  e.  (SubMgm `  S
) )  /\  (
x  e.  X  /\  y  e.  X )
)  ->  ( x
( +g  `  S ) y )  e.  X
)
30 fvres 6207 . . . . . . 7  |-  ( ( x ( +g  `  S
) y )  e.  X  ->  ( ( F  |`  X ) `  ( x ( +g  `  S ) y ) )  =  ( F `
 ( x ( +g  `  S ) y ) ) )
3129, 30syl 17 . . . . . 6  |-  ( ( ( F  e.  ( S MgmHom  T )  /\  X  e.  (SubMgm `  S
) )  /\  (
x  e.  X  /\  y  e.  X )
)  ->  ( ( F  |`  X ) `  ( x ( +g  `  S ) y ) )  =  ( F `
 ( x ( +g  `  S ) y ) ) )
32 fvres 6207 . . . . . . . 8  |-  ( x  e.  X  ->  (
( F  |`  X ) `
 x )  =  ( F `  x
) )
33 fvres 6207 . . . . . . . 8  |-  ( y  e.  X  ->  (
( F  |`  X ) `
 y )  =  ( F `  y
) )
3432, 33oveqan12d 6669 . . . . . . 7  |-  ( ( x  e.  X  /\  y  e.  X )  ->  ( ( ( F  |`  X ) `  x
) ( +g  `  T
) ( ( F  |`  X ) `  y
) )  =  ( ( F `  x
) ( +g  `  T
) ( F `  y ) ) )
3534adantl 482 . . . . . 6  |-  ( ( ( F  e.  ( S MgmHom  T )  /\  X  e.  (SubMgm `  S
) )  /\  (
x  e.  X  /\  y  e.  X )
)  ->  ( (
( F  |`  X ) `
 x ) ( +g  `  T ) ( ( F  |`  X ) `  y
) )  =  ( ( F `  x
) ( +g  `  T
) ( F `  y ) ) )
3626, 31, 353eqtr4d 2666 . . . . 5  |-  ( ( ( F  e.  ( S MgmHom  T )  /\  X  e.  (SubMgm `  S
) )  /\  (
x  e.  X  /\  y  e.  X )
)  ->  ( ( F  |`  X ) `  ( x ( +g  `  S ) y ) )  =  ( ( ( F  |`  X ) `
 x ) ( +g  `  T ) ( ( F  |`  X ) `  y
) ) )
3736ralrimivva 2971 . . . 4  |-  ( ( F  e.  ( S MgmHom  T )  /\  X  e.  (SubMgm `  S )
)  ->  A. x  e.  X  A. y  e.  X  ( ( F  |`  X ) `  ( x ( +g  `  S ) y ) )  =  ( ( ( F  |`  X ) `
 x ) ( +g  `  T ) ( ( F  |`  X ) `  y
) ) )
383, 23ressplusg 15993 . . . . . . . . . 10  |-  ( X  e.  (SubMgm `  S
)  ->  ( +g  `  S )  =  ( +g  `  U ) )
3938adantl 482 . . . . . . . . 9  |-  ( ( F  e.  ( S MgmHom  T )  /\  X  e.  (SubMgm `  S )
)  ->  ( +g  `  S )  =  ( +g  `  U ) )
4039oveqd 6667 . . . . . . . 8  |-  ( ( F  e.  ( S MgmHom  T )  /\  X  e.  (SubMgm `  S )
)  ->  ( x
( +g  `  S ) y )  =  ( x ( +g  `  U
) y ) )
4140fveq2d 6195 . . . . . . 7  |-  ( ( F  e.  ( S MgmHom  T )  /\  X  e.  (SubMgm `  S )
)  ->  ( ( F  |`  X ) `  ( x ( +g  `  S ) y ) )  =  ( ( F  |`  X ) `  ( x ( +g  `  U ) y ) ) )
4241eqeq1d 2624 . . . . . 6  |-  ( ( F  e.  ( S MgmHom  T )  /\  X  e.  (SubMgm `  S )
)  ->  ( (
( F  |`  X ) `
 ( x ( +g  `  S ) y ) )  =  ( ( ( F  |`  X ) `  x
) ( +g  `  T
) ( ( F  |`  X ) `  y
) )  <->  ( ( F  |`  X ) `  ( x ( +g  `  U ) y ) )  =  ( ( ( F  |`  X ) `
 x ) ( +g  `  T ) ( ( F  |`  X ) `  y
) ) ) )
4314, 42raleqbidv 3152 . . . . 5  |-  ( ( F  e.  ( S MgmHom  T )  /\  X  e.  (SubMgm `  S )
)  ->  ( A. y  e.  X  (
( F  |`  X ) `
 ( x ( +g  `  S ) y ) )  =  ( ( ( F  |`  X ) `  x
) ( +g  `  T
) ( ( F  |`  X ) `  y
) )  <->  A. y  e.  ( Base `  U
) ( ( F  |`  X ) `  (
x ( +g  `  U
) y ) )  =  ( ( ( F  |`  X ) `  x ) ( +g  `  T ) ( ( F  |`  X ) `  y ) ) ) )
4414, 43raleqbidv 3152 . . . 4  |-  ( ( F  e.  ( S MgmHom  T )  /\  X  e.  (SubMgm `  S )
)  ->  ( A. x  e.  X  A. y  e.  X  (
( F  |`  X ) `
 ( x ( +g  `  S ) y ) )  =  ( ( ( F  |`  X ) `  x
) ( +g  `  T
) ( ( F  |`  X ) `  y
) )  <->  A. x  e.  ( Base `  U
) A. y  e.  ( Base `  U
) ( ( F  |`  X ) `  (
x ( +g  `  U
) y ) )  =  ( ( ( F  |`  X ) `  x ) ( +g  `  T ) ( ( F  |`  X ) `  y ) ) ) )
4537, 44mpbid 222 . . 3  |-  ( ( F  e.  ( S MgmHom  T )  /\  X  e.  (SubMgm `  S )
)  ->  A. x  e.  ( Base `  U
) A. y  e.  ( Base `  U
) ( ( F  |`  X ) `  (
x ( +g  `  U
) y ) )  =  ( ( ( F  |`  X ) `  x ) ( +g  `  T ) ( ( F  |`  X ) `  y ) ) )
4616, 45jca 554 . 2  |-  ( ( F  e.  ( S MgmHom  T )  /\  X  e.  (SubMgm `  S )
)  ->  ( ( F  |`  X ) : ( Base `  U
) --> ( Base `  T
)  /\  A. x  e.  ( Base `  U
) A. y  e.  ( Base `  U
) ( ( F  |`  X ) `  (
x ( +g  `  U
) y ) )  =  ( ( ( F  |`  X ) `  x ) ( +g  `  T ) ( ( F  |`  X ) `  y ) ) ) )
47 eqid 2622 . . 3  |-  ( Base `  U )  =  (
Base `  U )
48 eqid 2622 . . 3  |-  ( +g  `  U )  =  ( +g  `  U )
4947, 7, 48, 24ismgmhm 41783 . 2  |-  ( ( F  |`  X )  e.  ( U MgmHom  T )  <-> 
( ( U  e. Mgm  /\  T  e. Mgm )  /\  ( ( F  |`  X ) : (
Base `  U ) --> ( Base `  T )  /\  A. x  e.  (
Base `  U ) A. y  e.  ( Base `  U ) ( ( F  |`  X ) `
 ( x ( +g  `  U ) y ) )  =  ( ( ( F  |`  X ) `  x
) ( +g  `  T
) ( ( F  |`  X ) `  y
) ) ) ) )
505, 46, 49sylanbrc 698 1  |-  ( ( F  e.  ( S MgmHom  T )  /\  X  e.  (SubMgm `  S )
)  ->  ( F  |`  X )  e.  ( U MgmHom  T ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912    C_ wss 3574    |` cres 5116   -->wf 5884   ` cfv 5888  (class class class)co 6650   Basecbs 15857   ↾s cress 15858   +g cplusg 15941  Mgmcmgm 17240   MgmHom cmgmhm 41777  SubMgmcsubmgm 41778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mgm 17242  df-mgmhm 41779  df-submgm 41780
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator