MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mod1ile Structured version   Visualization version   Unicode version

Theorem mod1ile 17105
Description: The weak direction of the modular law (e.g., pmod1i 35134, atmod1i1 35143) that holds in any lattice. (Contributed by NM, 11-May-2012.)
Hypotheses
Ref Expression
modle.b  |-  B  =  ( Base `  K
)
modle.l  |-  .<_  =  ( le `  K )
modle.j  |-  .\/  =  ( join `  K )
modle.m  |-  ./\  =  ( meet `  K )
Assertion
Ref Expression
mod1ile  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  .<_  Z  ->  ( X  .\/  ( Y  ./\  Z ) )  .<_  ( ( X  .\/  Y ) 
./\  Z ) ) )

Proof of Theorem mod1ile
StepHypRef Expression
1 simpll 790 . . . . 5  |-  ( ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  X  .<_  Z )  ->  K  e.  Lat )
2 simplr1 1103 . . . . 5  |-  ( ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  X  .<_  Z )  ->  X  e.  B )
3 simplr2 1104 . . . . 5  |-  ( ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  X  .<_  Z )  ->  Y  e.  B )
4 modle.b . . . . . 6  |-  B  =  ( Base `  K
)
5 modle.l . . . . . 6  |-  .<_  =  ( le `  K )
6 modle.j . . . . . 6  |-  .\/  =  ( join `  K )
74, 5, 6latlej1 17060 . . . . 5  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  X  .<_  ( X  .\/  Y ) )
81, 2, 3, 7syl3anc 1326 . . . 4  |-  ( ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  X  .<_  Z )  ->  X  .<_  ( X  .\/  Y
) )
9 simpr 477 . . . 4  |-  ( ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  X  .<_  Z )  ->  X  .<_  Z )
104, 6latjcl 17051 . . . . . 6  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .\/  Y
)  e.  B )
111, 2, 3, 10syl3anc 1326 . . . . 5  |-  ( ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  X  .<_  Z )  ->  ( X  .\/  Y )  e.  B )
12 simplr3 1105 . . . . 5  |-  ( ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  X  .<_  Z )  ->  Z  e.  B )
13 modle.m . . . . . 6  |-  ./\  =  ( meet `  K )
144, 5, 13latlem12 17078 . . . . 5  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  ( X  .\/  Y
)  e.  B  /\  Z  e.  B )
)  ->  ( ( X  .<_  ( X  .\/  Y )  /\  X  .<_  Z )  <->  X  .<_  ( ( X  .\/  Y ) 
./\  Z ) ) )
151, 2, 11, 12, 14syl13anc 1328 . . . 4  |-  ( ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  X  .<_  Z )  ->  (
( X  .<_  ( X 
.\/  Y )  /\  X  .<_  Z )  <->  X  .<_  ( ( X  .\/  Y
)  ./\  Z )
) )
168, 9, 15mpbi2and 956 . . 3  |-  ( ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  X  .<_  Z )  ->  X  .<_  ( ( X  .\/  Y )  ./\  Z )
)
174, 5, 6, 13latmlej12 17091 . . . . 5  |-  ( ( K  e.  Lat  /\  ( Y  e.  B  /\  Z  e.  B  /\  X  e.  B
) )  ->  ( Y  ./\  Z )  .<_  ( X  .\/  Y ) )
181, 3, 12, 2, 17syl13anc 1328 . . . 4  |-  ( ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  X  .<_  Z )  ->  ( Y  ./\  Z )  .<_  ( X  .\/  Y ) )
194, 5, 13latmle2 17077 . . . . 5  |-  ( ( K  e.  Lat  /\  Y  e.  B  /\  Z  e.  B )  ->  ( Y  ./\  Z
)  .<_  Z )
201, 3, 12, 19syl3anc 1326 . . . 4  |-  ( ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  X  .<_  Z )  ->  ( Y  ./\  Z )  .<_  Z )
214, 13latmcl 17052 . . . . . 6  |-  ( ( K  e.  Lat  /\  Y  e.  B  /\  Z  e.  B )  ->  ( Y  ./\  Z
)  e.  B )
221, 3, 12, 21syl3anc 1326 . . . . 5  |-  ( ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  X  .<_  Z )  ->  ( Y  ./\  Z )  e.  B )
234, 5, 13latlem12 17078 . . . . 5  |-  ( ( K  e.  Lat  /\  ( ( Y  ./\  Z )  e.  B  /\  ( X  .\/  Y )  e.  B  /\  Z  e.  B ) )  -> 
( ( ( Y 
./\  Z )  .<_  ( X  .\/  Y )  /\  ( Y  ./\  Z )  .<_  Z )  <->  ( Y  ./\  Z )  .<_  ( ( X  .\/  Y )  ./\  Z )
) )
241, 22, 11, 12, 23syl13anc 1328 . . . 4  |-  ( ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  X  .<_  Z )  ->  (
( ( Y  ./\  Z )  .<_  ( X  .\/  Y )  /\  ( Y  ./\  Z )  .<_  Z )  <->  ( Y  ./\ 
Z )  .<_  ( ( X  .\/  Y ) 
./\  Z ) ) )
2518, 20, 24mpbi2and 956 . . 3  |-  ( ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  X  .<_  Z )  ->  ( Y  ./\  Z )  .<_  ( ( X  .\/  Y )  ./\  Z )
)
264, 13latmcl 17052 . . . . 5  |-  ( ( K  e.  Lat  /\  ( X  .\/  Y )  e.  B  /\  Z  e.  B )  ->  (
( X  .\/  Y
)  ./\  Z )  e.  B )
271, 11, 12, 26syl3anc 1326 . . . 4  |-  ( ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  X  .<_  Z )  ->  (
( X  .\/  Y
)  ./\  Z )  e.  B )
284, 5, 6latjle12 17062 . . . 4  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  ( Y  ./\  Z
)  e.  B  /\  ( ( X  .\/  Y )  ./\  Z )  e.  B ) )  -> 
( ( X  .<_  ( ( X  .\/  Y
)  ./\  Z )  /\  ( Y  ./\  Z
)  .<_  ( ( X 
.\/  Y )  ./\  Z ) )  <->  ( X  .\/  ( Y  ./\  Z
) )  .<_  ( ( X  .\/  Y ) 
./\  Z ) ) )
291, 2, 22, 27, 28syl13anc 1328 . . 3  |-  ( ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  X  .<_  Z )  ->  (
( X  .<_  ( ( X  .\/  Y ) 
./\  Z )  /\  ( Y  ./\  Z ) 
.<_  ( ( X  .\/  Y )  ./\  Z )
)  <->  ( X  .\/  ( Y  ./\  Z ) )  .<_  ( ( X  .\/  Y )  ./\  Z ) ) )
3016, 25, 29mpbi2and 956 . 2  |-  ( ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  X  .<_  Z )  ->  ( X  .\/  ( Y  ./\  Z ) )  .<_  ( ( X  .\/  Y ) 
./\  Z ) )
3130ex 450 1  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  .<_  Z  ->  ( X  .\/  ( Y  ./\  Z ) )  .<_  ( ( X  .\/  Y ) 
./\  Z ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Basecbs 15857   lecple 15948   joincjn 16944   meetcmee 16945   Latclat 17045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-poset 16946  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-lat 17046
This theorem is referenced by:  mod2ile  17106  hlmod1i  35142
  Copyright terms: Public domain W3C validator