MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mul2lt0rlt0 Structured version   Visualization version   Unicode version

Theorem mul2lt0rlt0 11932
Description: If the result of a multiplication is strictly negative, then multiplicands are of different signs. (Contributed by Thierry Arnoux, 19-Sep-2018.)
Hypotheses
Ref Expression
mul2lt0.1  |-  ( ph  ->  A  e.  RR )
mul2lt0.2  |-  ( ph  ->  B  e.  RR )
mul2lt0.3  |-  ( ph  ->  ( A  x.  B
)  <  0 )
Assertion
Ref Expression
mul2lt0rlt0  |-  ( (
ph  /\  B  <  0 )  ->  0  <  A )

Proof of Theorem mul2lt0rlt0
StepHypRef Expression
1 mul2lt0.1 . . . . . 6  |-  ( ph  ->  A  e.  RR )
2 mul2lt0.2 . . . . . 6  |-  ( ph  ->  B  e.  RR )
31, 2remulcld 10070 . . . . 5  |-  ( ph  ->  ( A  x.  B
)  e.  RR )
43adantr 481 . . . 4  |-  ( (
ph  /\  B  <  0 )  ->  ( A  x.  B )  e.  RR )
5 0red 10041 . . . 4  |-  ( (
ph  /\  B  <  0 )  ->  0  e.  RR )
6 negelrp 11864 . . . . . 6  |-  ( B  e.  RR  ->  ( -u B  e.  RR+  <->  B  <  0 ) )
72, 6syl 17 . . . . 5  |-  ( ph  ->  ( -u B  e.  RR+ 
<->  B  <  0 ) )
87biimpar 502 . . . 4  |-  ( (
ph  /\  B  <  0 )  ->  -u B  e.  RR+ )
9 mul2lt0.3 . . . . 5  |-  ( ph  ->  ( A  x.  B
)  <  0 )
109adantr 481 . . . 4  |-  ( (
ph  /\  B  <  0 )  ->  ( A  x.  B )  <  0 )
114, 5, 8, 10ltdiv1dd 11929 . . 3  |-  ( (
ph  /\  B  <  0 )  ->  (
( A  x.  B
)  /  -u B
)  <  ( 0  /  -u B ) )
121recnd 10068 . . . . . . 7  |-  ( ph  ->  A  e.  CC )
1312adantr 481 . . . . . 6  |-  ( (
ph  /\  B  <  0 )  ->  A  e.  CC )
142recnd 10068 . . . . . . 7  |-  ( ph  ->  B  e.  CC )
1514adantr 481 . . . . . 6  |-  ( (
ph  /\  B  <  0 )  ->  B  e.  CC )
1613, 15mulcld 10060 . . . . 5  |-  ( (
ph  /\  B  <  0 )  ->  ( A  x.  B )  e.  CC )
17 simpr 477 . . . . . 6  |-  ( (
ph  /\  B  <  0 )  ->  B  <  0 )
1817lt0ne0d 10593 . . . . 5  |-  ( (
ph  /\  B  <  0 )  ->  B  =/=  0 )
1916, 15, 18divneg2d 10815 . . . 4  |-  ( (
ph  /\  B  <  0 )  ->  -u (
( A  x.  B
)  /  B )  =  ( ( A  x.  B )  /  -u B ) )
2013, 15, 18divcan4d 10807 . . . . 5  |-  ( (
ph  /\  B  <  0 )  ->  (
( A  x.  B
)  /  B )  =  A )
2120negeqd 10275 . . . 4  |-  ( (
ph  /\  B  <  0 )  ->  -u (
( A  x.  B
)  /  B )  =  -u A )
2219, 21eqtr3d 2658 . . 3  |-  ( (
ph  /\  B  <  0 )  ->  (
( A  x.  B
)  /  -u B
)  =  -u A
)
2315negcld 10379 . . . 4  |-  ( (
ph  /\  B  <  0 )  ->  -u B  e.  CC )
2415, 18negne0d 10390 . . . 4  |-  ( (
ph  /\  B  <  0 )  ->  -u B  =/=  0 )
2523, 24div0d 10800 . . 3  |-  ( (
ph  /\  B  <  0 )  ->  (
0  /  -u B
)  =  0 )
2611, 22, 253brtr3d 4684 . 2  |-  ( (
ph  /\  B  <  0 )  ->  -u A  <  0 )
271adantr 481 . . 3  |-  ( (
ph  /\  B  <  0 )  ->  A  e.  RR )
2827lt0neg2d 10598 . 2  |-  ( (
ph  /\  B  <  0 )  ->  (
0  <  A  <->  -u A  <  0 ) )
2926, 28mpbird 247 1  |-  ( (
ph  /\  B  <  0 )  ->  0  <  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    e. wcel 1990   class class class wbr 4653  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936    x. cmul 9941    < clt 10074   -ucneg 10267    / cdiv 10684   RR+crp 11832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-rp 11833
This theorem is referenced by:  mul2lt0llt0  11934  mul2lt0bi  11936  sgnmul  30604  signsply0  30628
  Copyright terms: Public domain W3C validator