Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signsply0 Structured version   Visualization version   Unicode version

Theorem signsply0 30628
Description: Lemma for the rule of signs, based on Bolzano's intermediate value theorem for polynomials : If the lowest and highest coefficient  A and  B are of opposite signs, the polynomial admits a positive root. (Contributed by Thierry Arnoux, 19-Sep-2018.)
Hypotheses
Ref Expression
signsply0.d  |-  D  =  (deg `  F )
signsply0.c  |-  C  =  (coeff `  F )
signsply0.b  |-  B  =  ( C `  D
)
signsply0.a  |-  A  =  ( C `  0
)
signsply0.1  |-  ( ph  ->  F  e.  (Poly `  RR ) )
signsply0.2  |-  ( ph  ->  F  =/=  0p )
signsply0.3  |-  ( ph  ->  ( A  x.  B
)  <  0 )
Assertion
Ref Expression
signsply0  |-  ( ph  ->  E. z  e.  RR+  ( F `  z )  =  0 )
Distinct variable groups:    z, B    z, F    ph, z
Allowed substitution hints:    A( z)    C( z)    D( z)

Proof of Theorem signsply0
Dummy variables  e 
d  f  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 792 . . . . . 6  |-  ( ( ( ( ph  /\  -u B  e.  RR+ )  /\  d  e.  RR+ )  /\  A. f  e.  RR+  ( d  <_  f  ->  ( abs `  (
( ( F `  f )  /  (
f ^ D ) )  -  B ) )  <  -u B
) )  ->  d  e.  RR+ )
2 simpr 477 . . . . . 6  |-  ( ( ( ( ph  /\  -u B  e.  RR+ )  /\  d  e.  RR+ )  /\  A. f  e.  RR+  ( d  <_  f  ->  ( abs `  (
( ( F `  f )  /  (
f ^ D ) )  -  B ) )  <  -u B
) )  ->  A. f  e.  RR+  ( d  <_ 
f  ->  ( abs `  ( ( ( F `
 f )  / 
( f ^ D
) )  -  B
) )  <  -u B
) )
3 rpxr 11840 . . . . . . . 8  |-  ( d  e.  RR+  ->  d  e. 
RR* )
4 xrleid 11983 . . . . . . . 8  |-  ( d  e.  RR*  ->  d  <_ 
d )
53, 4syl 17 . . . . . . 7  |-  ( d  e.  RR+  ->  d  <_ 
d )
65ad2antlr 763 . . . . . 6  |-  ( ( ( ( ph  /\  -u B  e.  RR+ )  /\  d  e.  RR+ )  /\  A. f  e.  RR+  ( d  <_  f  ->  ( abs `  (
( ( F `  f )  /  (
f ^ D ) )  -  B ) )  <  -u B
) )  ->  d  <_  d )
7 id 22 . . . . . . 7  |-  ( d  e.  RR+  ->  d  e.  RR+ )
8 simpr 477 . . . . . . . . 9  |-  ( ( d  e.  RR+  /\  f  =  d )  -> 
f  =  d )
98breq2d 4665 . . . . . . . 8  |-  ( ( d  e.  RR+  /\  f  =  d )  -> 
( d  <_  f  <->  d  <_  d ) )
108fveq2d 6195 . . . . . . . . . . . 12  |-  ( ( d  e.  RR+  /\  f  =  d )  -> 
( F `  f
)  =  ( F `
 d ) )
118oveq1d 6665 . . . . . . . . . . . 12  |-  ( ( d  e.  RR+  /\  f  =  d )  -> 
( f ^ D
)  =  ( d ^ D ) )
1210, 11oveq12d 6668 . . . . . . . . . . 11  |-  ( ( d  e.  RR+  /\  f  =  d )  -> 
( ( F `  f )  /  (
f ^ D ) )  =  ( ( F `  d )  /  ( d ^ D ) ) )
1312oveq1d 6665 . . . . . . . . . 10  |-  ( ( d  e.  RR+  /\  f  =  d )  -> 
( ( ( F `
 f )  / 
( f ^ D
) )  -  B
)  =  ( ( ( F `  d
)  /  ( d ^ D ) )  -  B ) )
1413fveq2d 6195 . . . . . . . . 9  |-  ( ( d  e.  RR+  /\  f  =  d )  -> 
( abs `  (
( ( F `  f )  /  (
f ^ D ) )  -  B ) )  =  ( abs `  ( ( ( F `
 d )  / 
( d ^ D
) )  -  B
) ) )
1514breq1d 4663 . . . . . . . 8  |-  ( ( d  e.  RR+  /\  f  =  d )  -> 
( ( abs `  (
( ( F `  f )  /  (
f ^ D ) )  -  B ) )  <  -u B  <->  ( abs `  ( ( ( F `  d
)  /  ( d ^ D ) )  -  B ) )  <  -u B ) )
169, 15imbi12d 334 . . . . . . 7  |-  ( ( d  e.  RR+  /\  f  =  d )  -> 
( ( d  <_ 
f  ->  ( abs `  ( ( ( F `
 f )  / 
( f ^ D
) )  -  B
) )  <  -u B
)  <->  ( d  <_ 
d  ->  ( abs `  ( ( ( F `
 d )  / 
( d ^ D
) )  -  B
) )  <  -u B
) ) )
177, 16rspcdv 3312 . . . . . 6  |-  ( d  e.  RR+  ->  ( A. f  e.  RR+  ( d  <_  f  ->  ( abs `  ( ( ( F `  f )  /  ( f ^ D ) )  -  B ) )  <  -u B )  ->  (
d  <_  d  ->  ( abs `  ( ( ( F `  d
)  /  ( d ^ D ) )  -  B ) )  <  -u B ) ) )
181, 2, 6, 17syl3c 66 . . . . 5  |-  ( ( ( ( ph  /\  -u B  e.  RR+ )  /\  d  e.  RR+ )  /\  A. f  e.  RR+  ( d  <_  f  ->  ( abs `  (
( ( F `  f )  /  (
f ^ D ) )  -  B ) )  <  -u B
) )  ->  ( abs `  ( ( ( F `  d )  /  ( d ^ D ) )  -  B ) )  <  -u B )
19 signsply0.1 . . . . . . . . . . . 12  |-  ( ph  ->  F  e.  (Poly `  RR ) )
2019ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ph  /\  -u B  e.  RR+ )  /\  d  e.  RR+ )  ->  F  e.  (Poly `  RR )
)
21 simpr 477 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  -u B  e.  RR+ )  /\  d  e.  RR+ )  ->  d  e.  RR+ )
2221rpred 11872 . . . . . . . . . . 11  |-  ( ( ( ph  /\  -u B  e.  RR+ )  /\  d  e.  RR+ )  ->  d  e.  RR )
2320, 22plyrecld 30626 . . . . . . . . . 10  |-  ( ( ( ph  /\  -u B  e.  RR+ )  /\  d  e.  RR+ )  ->  ( F `  d )  e.  RR )
24 signsply0.d . . . . . . . . . . . . 13  |-  D  =  (deg `  F )
25 dgrcl 23989 . . . . . . . . . . . . . 14  |-  ( F  e.  (Poly `  RR )  ->  (deg `  F
)  e.  NN0 )
2619, 25syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  (deg `  F )  e.  NN0 )
2724, 26syl5eqel 2705 . . . . . . . . . . . 12  |-  ( ph  ->  D  e.  NN0 )
2827ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ph  /\  -u B  e.  RR+ )  /\  d  e.  RR+ )  ->  D  e.  NN0 )
2922, 28reexpcld 13025 . . . . . . . . . 10  |-  ( ( ( ph  /\  -u B  e.  RR+ )  /\  d  e.  RR+ )  ->  (
d ^ D )  e.  RR )
3021rpcnd 11874 . . . . . . . . . . 11  |-  ( ( ( ph  /\  -u B  e.  RR+ )  /\  d  e.  RR+ )  ->  d  e.  CC )
3121rpne0d 11877 . . . . . . . . . . 11  |-  ( ( ( ph  /\  -u B  e.  RR+ )  /\  d  e.  RR+ )  ->  d  =/=  0 )
3227nn0zd 11480 . . . . . . . . . . . 12  |-  ( ph  ->  D  e.  ZZ )
3332ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ph  /\  -u B  e.  RR+ )  /\  d  e.  RR+ )  ->  D  e.  ZZ )
3430, 31, 33expne0d 13014 . . . . . . . . . 10  |-  ( ( ( ph  /\  -u B  e.  RR+ )  /\  d  e.  RR+ )  ->  (
d ^ D )  =/=  0 )
3523, 29, 34redivcld 10853 . . . . . . . . 9  |-  ( ( ( ph  /\  -u B  e.  RR+ )  /\  d  e.  RR+ )  ->  (
( F `  d
)  /  ( d ^ D ) )  e.  RR )
36 signsply0.b . . . . . . . . . . . 12  |-  B  =  ( C `  D
)
37 0re 10040 . . . . . . . . . . . . . 14  |-  0  e.  RR
38 signsply0.c . . . . . . . . . . . . . . 15  |-  C  =  (coeff `  F )
3938coef2 23987 . . . . . . . . . . . . . 14  |-  ( ( F  e.  (Poly `  RR )  /\  0  e.  RR )  ->  C : NN0 --> RR )
4037, 39mpan2 707 . . . . . . . . . . . . 13  |-  ( F  e.  (Poly `  RR )  ->  C : NN0 --> RR )
4140ffvelrnda 6359 . . . . . . . . . . . 12  |-  ( ( F  e.  (Poly `  RR )  /\  D  e. 
NN0 )  ->  ( C `  D )  e.  RR )
4236, 41syl5eqel 2705 . . . . . . . . . . 11  |-  ( ( F  e.  (Poly `  RR )  /\  D  e. 
NN0 )  ->  B  e.  RR )
4319, 27, 42syl2anc 693 . . . . . . . . . 10  |-  ( ph  ->  B  e.  RR )
4443ad2antrr 762 . . . . . . . . 9  |-  ( ( ( ph  /\  -u B  e.  RR+ )  /\  d  e.  RR+ )  ->  B  e.  RR )
4544renegcld 10457 . . . . . . . . 9  |-  ( ( ( ph  /\  -u B  e.  RR+ )  /\  d  e.  RR+ )  ->  -u B  e.  RR )
4635, 44, 45absdifltd 14172 . . . . . . . 8  |-  ( ( ( ph  /\  -u B  e.  RR+ )  /\  d  e.  RR+ )  ->  (
( abs `  (
( ( F `  d )  /  (
d ^ D ) )  -  B ) )  <  -u B  <->  ( ( B  -  -u B
)  <  ( ( F `  d )  /  ( d ^ D ) )  /\  ( ( F `  d )  /  (
d ^ D ) )  <  ( B  +  -u B ) ) ) )
4746simplbda 654 . . . . . . 7  |-  ( ( ( ( ph  /\  -u B  e.  RR+ )  /\  d  e.  RR+ )  /\  ( abs `  (
( ( F `  d )  /  (
d ^ D ) )  -  B ) )  <  -u B
)  ->  ( ( F `  d )  /  ( d ^ D ) )  < 
( B  +  -u B ) )
4843recnd 10068 . . . . . . . . . 10  |-  ( ph  ->  B  e.  CC )
4948ad2antrr 762 . . . . . . . . 9  |-  ( ( ( ph  /\  -u B  e.  RR+ )  /\  d  e.  RR+ )  ->  B  e.  CC )
5049negidd 10382 . . . . . . . 8  |-  ( ( ( ph  /\  -u B  e.  RR+ )  /\  d  e.  RR+ )  ->  ( B  +  -u B )  =  0 )
5150adantr 481 . . . . . . 7  |-  ( ( ( ( ph  /\  -u B  e.  RR+ )  /\  d  e.  RR+ )  /\  ( abs `  (
( ( F `  d )  /  (
d ^ D ) )  -  B ) )  <  -u B
)  ->  ( B  +  -u B )  =  0 )
5247, 51breqtrd 4679 . . . . . 6  |-  ( ( ( ( ph  /\  -u B  e.  RR+ )  /\  d  e.  RR+ )  /\  ( abs `  (
( ( F `  d )  /  (
d ^ D ) )  -  B ) )  <  -u B
)  ->  ( ( F `  d )  /  ( d ^ D ) )  <  0 )
5321, 33rpexpcld 13032 . . . . . . . . . 10  |-  ( ( ( ph  /\  -u B  e.  RR+ )  /\  d  e.  RR+ )  ->  (
d ^ D )  e.  RR+ )
5423, 53ge0divd 11910 . . . . . . . . 9  |-  ( ( ( ph  /\  -u B  e.  RR+ )  /\  d  e.  RR+ )  ->  (
0  <_  ( F `  d )  <->  0  <_  ( ( F `  d
)  /  ( d ^ D ) ) ) )
5554notbid 308 . . . . . . . 8  |-  ( ( ( ph  /\  -u B  e.  RR+ )  /\  d  e.  RR+ )  ->  ( -.  0  <_  ( F `
 d )  <->  -.  0  <_  ( ( F `  d )  /  (
d ^ D ) ) ) )
56 0red 10041 . . . . . . . . 9  |-  ( ( ( ph  /\  -u B  e.  RR+ )  /\  d  e.  RR+ )  ->  0  e.  RR )
5723, 56ltnled 10184 . . . . . . . 8  |-  ( ( ( ph  /\  -u B  e.  RR+ )  /\  d  e.  RR+ )  ->  (
( F `  d
)  <  0  <->  -.  0  <_  ( F `  d
) ) )
5835, 56ltnled 10184 . . . . . . . 8  |-  ( ( ( ph  /\  -u B  e.  RR+ )  /\  d  e.  RR+ )  ->  (
( ( F `  d )  /  (
d ^ D ) )  <  0  <->  -.  0  <_  ( ( F `
 d )  / 
( d ^ D
) ) ) )
5955, 57, 583bitr4d 300 . . . . . . 7  |-  ( ( ( ph  /\  -u B  e.  RR+ )  /\  d  e.  RR+ )  ->  (
( F `  d
)  <  0  <->  ( ( F `  d )  /  ( d ^ D ) )  <  0 ) )
6059adantr 481 . . . . . 6  |-  ( ( ( ( ph  /\  -u B  e.  RR+ )  /\  d  e.  RR+ )  /\  ( abs `  (
( ( F `  d )  /  (
d ^ D ) )  -  B ) )  <  -u B
)  ->  ( ( F `  d )  <  0  <->  ( ( F `
 d )  / 
( d ^ D
) )  <  0
) )
6152, 60mpbird 247 . . . . 5  |-  ( ( ( ( ph  /\  -u B  e.  RR+ )  /\  d  e.  RR+ )  /\  ( abs `  (
( ( F `  d )  /  (
d ^ D ) )  -  B ) )  <  -u B
)  ->  ( F `  d )  <  0
)
6218, 61syldan 487 . . . 4  |-  ( ( ( ( ph  /\  -u B  e.  RR+ )  /\  d  e.  RR+ )  /\  A. f  e.  RR+  ( d  <_  f  ->  ( abs `  (
( ( F `  f )  /  (
f ^ D ) )  -  B ) )  <  -u B
) )  ->  ( F `  d )  <  0 )
63 0red 10041 . . . . . 6  |-  ( ( ( ( ph  /\  -u B  e.  RR+ )  /\  d  e.  RR+ )  /\  ( F `  d
)  <  0 )  ->  0  e.  RR )
64 simplr 792 . . . . . . 7  |-  ( ( ( ( ph  /\  -u B  e.  RR+ )  /\  d  e.  RR+ )  /\  ( F `  d
)  <  0 )  ->  d  e.  RR+ )
6564rpred 11872 . . . . . 6  |-  ( ( ( ( ph  /\  -u B  e.  RR+ )  /\  d  e.  RR+ )  /\  ( F `  d
)  <  0 )  ->  d  e.  RR )
6664rpgt0d 11875 . . . . . 6  |-  ( ( ( ( ph  /\  -u B  e.  RR+ )  /\  d  e.  RR+ )  /\  ( F `  d
)  <  0 )  ->  0  <  d
)
67 iccssre 12255 . . . . . . . 8  |-  ( ( 0  e.  RR  /\  d  e.  RR )  ->  ( 0 [,] d
)  C_  RR )
6837, 65, 67sylancr 695 . . . . . . 7  |-  ( ( ( ( ph  /\  -u B  e.  RR+ )  /\  d  e.  RR+ )  /\  ( F `  d
)  <  0 )  ->  ( 0 [,] d )  C_  RR )
69 ax-resscn 9993 . . . . . . 7  |-  RR  C_  CC
7068, 69syl6ss 3615 . . . . . 6  |-  ( ( ( ( ph  /\  -u B  e.  RR+ )  /\  d  e.  RR+ )  /\  ( F `  d
)  <  0 )  ->  ( 0 [,] d )  C_  CC )
71 plycn 24017 . . . . . . . 8  |-  ( F  e.  (Poly `  RR )  ->  F  e.  ( CC -cn-> CC ) )
7219, 71syl 17 . . . . . . 7  |-  ( ph  ->  F  e.  ( CC
-cn-> CC ) )
7372ad3antrrr 766 . . . . . 6  |-  ( ( ( ( ph  /\  -u B  e.  RR+ )  /\  d  e.  RR+ )  /\  ( F `  d
)  <  0 )  ->  F  e.  ( CC -cn-> CC ) )
7419ad4antr 768 . . . . . . 7  |-  ( ( ( ( ( ph  /\  -u B  e.  RR+ )  /\  d  e.  RR+ )  /\  ( F `  d
)  <  0 )  /\  x  e.  ( 0 [,] d ) )  ->  F  e.  (Poly `  RR ) )
7568sselda 3603 . . . . . . 7  |-  ( ( ( ( ( ph  /\  -u B  e.  RR+ )  /\  d  e.  RR+ )  /\  ( F `  d
)  <  0 )  /\  x  e.  ( 0 [,] d ) )  ->  x  e.  RR )
7674, 75plyrecld 30626 . . . . . 6  |-  ( ( ( ( ( ph  /\  -u B  e.  RR+ )  /\  d  e.  RR+ )  /\  ( F `  d
)  <  0 )  /\  x  e.  ( 0 [,] d ) )  ->  ( F `  x )  e.  RR )
77 simpr 477 . . . . . . 7  |-  ( ( ( ( ph  /\  -u B  e.  RR+ )  /\  d  e.  RR+ )  /\  ( F `  d
)  <  0 )  ->  ( F `  d )  <  0
)
78 simplll 798 . . . . . . . . 9  |-  ( ( ( ( ph  /\  -u B  e.  RR+ )  /\  d  e.  RR+ )  /\  ( F `  d
)  <  0 )  ->  ph )
7978, 43syl 17 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  -u B  e.  RR+ )  /\  d  e.  RR+ )  /\  ( F `  d
)  <  0 )  ->  B  e.  RR )
80 simpr 477 . . . . . . . . . . 11  |-  ( (
ph  /\  -u B  e.  RR+ )  ->  -u B  e.  RR+ )
8180ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  -u B  e.  RR+ )  /\  d  e.  RR+ )  /\  ( F `  d
)  <  0 )  ->  -u B  e.  RR+ )
82 negelrp 11864 . . . . . . . . . . 11  |-  ( B  e.  RR  ->  ( -u B  e.  RR+  <->  B  <  0 ) )
8382biimpa 501 . . . . . . . . . 10  |-  ( ( B  e.  RR  /\  -u B  e.  RR+ )  ->  B  <  0 )
8479, 81, 83syl2anc 693 . . . . . . . . 9  |-  ( ( ( ( ph  /\  -u B  e.  RR+ )  /\  d  e.  RR+ )  /\  ( F `  d
)  <  0 )  ->  B  <  0
)
85 signsply0.a . . . . . . . . . . . 12  |-  A  =  ( C `  0
)
8619, 37, 39sylancl 694 . . . . . . . . . . . . 13  |-  ( ph  ->  C : NN0 --> RR )
87 0nn0 11307 . . . . . . . . . . . . . 14  |-  0  e.  NN0
8887a1i 11 . . . . . . . . . . . . 13  |-  ( ph  ->  0  e.  NN0 )
8986, 88ffvelrnd 6360 . . . . . . . . . . . 12  |-  ( ph  ->  ( C `  0
)  e.  RR )
9085, 89syl5eqel 2705 . . . . . . . . . . 11  |-  ( ph  ->  A  e.  RR )
91 signsply0.3 . . . . . . . . . . 11  |-  ( ph  ->  ( A  x.  B
)  <  0 )
9290, 43, 91mul2lt0rlt0 11932 . . . . . . . . . 10  |-  ( (
ph  /\  B  <  0 )  ->  0  <  A )
9392, 85syl6breq 4694 . . . . . . . . 9  |-  ( (
ph  /\  B  <  0 )  ->  0  <  ( C `  0
) )
9478, 84, 93syl2anc 693 . . . . . . . 8  |-  ( ( ( ( ph  /\  -u B  e.  RR+ )  /\  d  e.  RR+ )  /\  ( F `  d
)  <  0 )  ->  0  <  ( C `  0 )
)
9538coefv0 24004 . . . . . . . . . 10  |-  ( F  e.  (Poly `  RR )  ->  ( F ` 
0 )  =  ( C `  0 ) )
9619, 95syl 17 . . . . . . . . 9  |-  ( ph  ->  ( F `  0
)  =  ( C `
 0 ) )
9796ad3antrrr 766 . . . . . . . 8  |-  ( ( ( ( ph  /\  -u B  e.  RR+ )  /\  d  e.  RR+ )  /\  ( F `  d
)  <  0 )  ->  ( F ` 
0 )  =  ( C `  0 ) )
9894, 97breqtrrd 4681 . . . . . . 7  |-  ( ( ( ( ph  /\  -u B  e.  RR+ )  /\  d  e.  RR+ )  /\  ( F `  d
)  <  0 )  ->  0  <  ( F `  0 )
)
9977, 98jca 554 . . . . . 6  |-  ( ( ( ( ph  /\  -u B  e.  RR+ )  /\  d  e.  RR+ )  /\  ( F `  d
)  <  0 )  ->  ( ( F `
 d )  <  0  /\  0  < 
( F `  0
) ) )
10063, 65, 63, 66, 70, 73, 76, 99ivth2 23224 . . . . 5  |-  ( ( ( ( ph  /\  -u B  e.  RR+ )  /\  d  e.  RR+ )  /\  ( F `  d
)  <  0 )  ->  E. z  e.  ( 0 (,) d ) ( F `  z
)  =  0 )
101 0le0 11110 . . . . . . . 8  |-  0  <_  0
102 pnfge 11964 . . . . . . . . 9  |-  ( d  e.  RR*  ->  d  <_ +oo )
1033, 102syl 17 . . . . . . . 8  |-  ( d  e.  RR+  ->  d  <_ +oo )
104 0xr 10086 . . . . . . . . 9  |-  0  e.  RR*
105 pnfxr 10092 . . . . . . . . 9  |- +oo  e.  RR*
106 ioossioo 12265 . . . . . . . . 9  |-  ( ( ( 0  e.  RR*  /\ +oo  e.  RR* )  /\  (
0  <_  0  /\  d  <_ +oo ) )  -> 
( 0 (,) d
)  C_  ( 0 (,) +oo ) )
107104, 105, 106mpanl12 718 . . . . . . . 8  |-  ( ( 0  <_  0  /\  d  <_ +oo )  ->  (
0 (,) d ) 
C_  ( 0 (,) +oo ) )
108101, 103, 107sylancr 695 . . . . . . 7  |-  ( d  e.  RR+  ->  ( 0 (,) d )  C_  ( 0 (,) +oo ) )
109 ioorp 12251 . . . . . . 7  |-  ( 0 (,) +oo )  = 
RR+
110108, 109syl6sseq 3651 . . . . . 6  |-  ( d  e.  RR+  ->  ( 0 (,) d )  C_  RR+ )
111 ssrexv 3667 . . . . . 6  |-  ( ( 0 (,) d ) 
C_  RR+  ->  ( E. z  e.  ( 0 (,) d ) ( F `  z )  =  0  ->  E. z  e.  RR+  ( F `  z )  =  0 ) )
11264, 110, 1113syl 18 . . . . 5  |-  ( ( ( ( ph  /\  -u B  e.  RR+ )  /\  d  e.  RR+ )  /\  ( F `  d
)  <  0 )  ->  ( E. z  e.  ( 0 (,) d
) ( F `  z )  =  0  ->  E. z  e.  RR+  ( F `  z )  =  0 ) )
113100, 112mpd 15 . . . 4  |-  ( ( ( ( ph  /\  -u B  e.  RR+ )  /\  d  e.  RR+ )  /\  ( F `  d
)  <  0 )  ->  E. z  e.  RR+  ( F `  z )  =  0 )
11462, 113syldan 487 . . 3  |-  ( ( ( ( ph  /\  -u B  e.  RR+ )  /\  d  e.  RR+ )  /\  A. f  e.  RR+  ( d  <_  f  ->  ( abs `  (
( ( F `  f )  /  (
f ^ D ) )  -  B ) )  <  -u B
) )  ->  E. z  e.  RR+  ( F `  z )  =  0 )
115 plyf 23954 . . . . . . . . . . 11  |-  ( F  e.  (Poly `  RR )  ->  F : CC --> CC )
11619, 115syl 17 . . . . . . . . . 10  |-  ( ph  ->  F : CC --> CC )
117 ffn 6045 . . . . . . . . . 10  |-  ( F : CC --> CC  ->  F  Fn  CC )
118116, 117syl 17 . . . . . . . . 9  |-  ( ph  ->  F  Fn  CC )
119 ovex 6678 . . . . . . . . . . 11  |-  ( x ^ D )  e. 
_V
120119rgenw 2924 . . . . . . . . . 10  |-  A. x  e.  RR+  ( x ^ D )  e.  _V
121 eqid 2622 . . . . . . . . . . 11  |-  ( x  e.  RR+  |->  ( x ^ D ) )  =  ( x  e.  RR+  |->  ( x ^ D ) )
122121fnmpt 6020 . . . . . . . . . 10  |-  ( A. x  e.  RR+  ( x ^ D )  e. 
_V  ->  ( x  e.  RR+  |->  ( x ^ D ) )  Fn  RR+ )
123120, 122mp1i 13 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  RR+  |->  ( x ^ D
) )  Fn  RR+ )
124 cnex 10017 . . . . . . . . . 10  |-  CC  e.  _V
125124a1i 11 . . . . . . . . 9  |-  ( ph  ->  CC  e.  _V )
126 rpssre 11843 . . . . . . . . . . . 12  |-  RR+  C_  RR
127126, 69sstri 3612 . . . . . . . . . . 11  |-  RR+  C_  CC
128124, 127ssexi 4803 . . . . . . . . . 10  |-  RR+  e.  _V
129128a1i 11 . . . . . . . . 9  |-  ( ph  -> 
RR+  e.  _V )
130 sseqin2 3817 . . . . . . . . . 10  |-  ( RR+  C_  CC  <->  ( CC  i^i  RR+ )  =  RR+ )
131127, 130mpbi 220 . . . . . . . . 9  |-  ( CC 
i^i  RR+ )  =  RR+
132 eqidd 2623 . . . . . . . . 9  |-  ( (
ph  /\  f  e.  CC )  ->  ( F `
 f )  =  ( F `  f
) )
133 eqidd 2623 . . . . . . . . . 10  |-  ( (
ph  /\  f  e.  RR+ )  ->  ( x  e.  RR+  |->  ( x ^ D ) )  =  ( x  e.  RR+  |->  ( x ^ D
) ) )
134 simpr 477 . . . . . . . . . . 11  |-  ( ( ( ph  /\  f  e.  RR+ )  /\  x  =  f )  ->  x  =  f )
135134oveq1d 6665 . . . . . . . . . 10  |-  ( ( ( ph  /\  f  e.  RR+ )  /\  x  =  f )  -> 
( x ^ D
)  =  ( f ^ D ) )
136 simpr 477 . . . . . . . . . 10  |-  ( (
ph  /\  f  e.  RR+ )  ->  f  e.  RR+ )
137 ovexd 6680 . . . . . . . . . 10  |-  ( (
ph  /\  f  e.  RR+ )  ->  ( f ^ D )  e.  _V )
138133, 135, 136, 137fvmptd 6288 . . . . . . . . 9  |-  ( (
ph  /\  f  e.  RR+ )  ->  ( (
x  e.  RR+  |->  ( x ^ D ) ) `
 f )  =  ( f ^ D
) )
139118, 123, 125, 129, 131, 132, 138offval 6904 . . . . . . . 8  |-  ( ph  ->  ( F  oF  /  ( x  e.  RR+  |->  ( x ^ D ) ) )  =  ( f  e.  RR+  |->  ( ( F `
 f )  / 
( f ^ D
) ) ) )
140 oveq1 6657 . . . . . . . . . . 11  |-  ( x  =  f  ->  (
x ^ D )  =  ( f ^ D ) )
141140cbvmptv 4750 . . . . . . . . . 10  |-  ( x  e.  RR+  |->  ( x ^ D ) )  =  ( f  e.  RR+  |->  ( f ^ D ) )
14224, 38, 36, 141signsplypnf 30627 . . . . . . . . 9  |-  ( F  e.  (Poly `  RR )  ->  ( F  oF  /  ( x  e.  RR+  |->  ( x ^ D ) ) )  ~~> r  B )
14319, 142syl 17 . . . . . . . 8  |-  ( ph  ->  ( F  oF  /  ( x  e.  RR+  |->  ( x ^ D ) ) )  ~~> r  B )
144139, 143eqbrtrrd 4677 . . . . . . 7  |-  ( ph  ->  ( f  e.  RR+  |->  ( ( F `  f )  /  (
f ^ D ) ) )  ~~> r  B
)
145116adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  f  e.  RR+ )  ->  F : CC
--> CC )
146136rpcnd 11874 . . . . . . . . . . 11  |-  ( (
ph  /\  f  e.  RR+ )  ->  f  e.  CC )
147145, 146ffvelrnd 6360 . . . . . . . . . 10  |-  ( (
ph  /\  f  e.  RR+ )  ->  ( F `  f )  e.  CC )
14827adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  f  e.  RR+ )  ->  D  e.  NN0 )
149146, 148expcld 13008 . . . . . . . . . 10  |-  ( (
ph  /\  f  e.  RR+ )  ->  ( f ^ D )  e.  CC )
150136rpne0d 11877 . . . . . . . . . . 11  |-  ( (
ph  /\  f  e.  RR+ )  ->  f  =/=  0 )
15132adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  f  e.  RR+ )  ->  D  e.  ZZ )
152146, 150, 151expne0d 13014 . . . . . . . . . 10  |-  ( (
ph  /\  f  e.  RR+ )  ->  ( f ^ D )  =/=  0
)
153147, 149, 152divcld 10801 . . . . . . . . 9  |-  ( (
ph  /\  f  e.  RR+ )  ->  ( ( F `  f )  /  ( f ^ D ) )  e.  CC )
154153ralrimiva 2966 . . . . . . . 8  |-  ( ph  ->  A. f  e.  RR+  ( ( F `  f )  /  (
f ^ D ) )  e.  CC )
155126a1i 11 . . . . . . . 8  |-  ( ph  -> 
RR+  C_  RR )
156 1red 10055 . . . . . . . 8  |-  ( ph  ->  1  e.  RR )
157154, 155, 48, 156rlim3 14229 . . . . . . 7  |-  ( ph  ->  ( ( f  e.  RR+  |->  ( ( F `
 f )  / 
( f ^ D
) ) )  ~~> r  B  <->  A. e  e.  RR+  E. d  e.  ( 1 [,) +oo ) A. f  e.  RR+  ( d  <_  f  ->  ( abs `  (
( ( F `  f )  /  (
f ^ D ) )  -  B ) )  <  e ) ) )
158144, 157mpbid 222 . . . . . 6  |-  ( ph  ->  A. e  e.  RR+  E. d  e.  ( 1 [,) +oo ) A. f  e.  RR+  ( d  <_  f  ->  ( abs `  ( ( ( F `  f )  /  ( f ^ D ) )  -  B ) )  < 
e ) )
159 0lt1 10550 . . . . . . . . . 10  |-  0  <  1
160 pnfge 11964 . . . . . . . . . . 11  |-  ( +oo  e.  RR*  -> +oo  <_ +oo )
161105, 160ax-mp 5 . . . . . . . . . 10  |- +oo  <_ +oo
162 icossioo 12264 . . . . . . . . . 10  |-  ( ( ( 0  e.  RR*  /\ +oo  e.  RR* )  /\  (
0  <  1  /\ +oo 
<_ +oo ) )  -> 
( 1 [,) +oo )  C_  ( 0 (,) +oo ) )
163104, 105, 159, 161, 162mp4an 709 . . . . . . . . 9  |-  ( 1 [,) +oo )  C_  ( 0 (,) +oo )
164163, 109sseqtri 3637 . . . . . . . 8  |-  ( 1 [,) +oo )  C_  RR+
165 ssrexv 3667 . . . . . . . 8  |-  ( ( 1 [,) +oo )  C_  RR+  ->  ( E. d  e.  ( 1 [,) +oo ) A. f  e.  RR+  ( d  <_  f  ->  ( abs `  (
( ( F `  f )  /  (
f ^ D ) )  -  B ) )  <  e )  ->  E. d  e.  RR+  A. f  e.  RR+  (
d  <_  f  ->  ( abs `  ( ( ( F `  f
)  /  ( f ^ D ) )  -  B ) )  <  e ) ) )
166164, 165ax-mp 5 . . . . . . 7  |-  ( E. d  e.  ( 1 [,) +oo ) A. f  e.  RR+  ( d  <_  f  ->  ( abs `  ( ( ( F `  f )  /  ( f ^ D ) )  -  B ) )  < 
e )  ->  E. d  e.  RR+  A. f  e.  RR+  ( d  <_  f  ->  ( abs `  (
( ( F `  f )  /  (
f ^ D ) )  -  B ) )  <  e ) )
167166ralimi 2952 . . . . . 6  |-  ( A. e  e.  RR+  E. d  e.  ( 1 [,) +oo ) A. f  e.  RR+  ( d  <_  f  ->  ( abs `  (
( ( F `  f )  /  (
f ^ D ) )  -  B ) )  <  e )  ->  A. e  e.  RR+  E. d  e.  RR+  A. f  e.  RR+  ( d  <_ 
f  ->  ( abs `  ( ( ( F `
 f )  / 
( f ^ D
) )  -  B
) )  <  e
) )
168158, 167syl 17 . . . . 5  |-  ( ph  ->  A. e  e.  RR+  E. d  e.  RR+  A. f  e.  RR+  ( d  <_ 
f  ->  ( abs `  ( ( ( F `
 f )  / 
( f ^ D
) )  -  B
) )  <  e
) )
169168adantr 481 . . . 4  |-  ( (
ph  /\  -u B  e.  RR+ )  ->  A. e  e.  RR+  E. d  e.  RR+  A. f  e.  RR+  ( d  <_  f  ->  ( abs `  (
( ( F `  f )  /  (
f ^ D ) )  -  B ) )  <  e ) )
170 simpr 477 . . . . . . . 8  |-  ( ( ( ph  /\  -u B  e.  RR+ )  /\  e  =  -u B )  -> 
e  =  -u B
)
171170breq2d 4665 . . . . . . 7  |-  ( ( ( ph  /\  -u B  e.  RR+ )  /\  e  =  -u B )  -> 
( ( abs `  (
( ( F `  f )  /  (
f ^ D ) )  -  B ) )  <  e  <->  ( abs `  ( ( ( F `
 f )  / 
( f ^ D
) )  -  B
) )  <  -u B
) )
172171imbi2d 330 . . . . . 6  |-  ( ( ( ph  /\  -u B  e.  RR+ )  /\  e  =  -u B )  -> 
( ( d  <_ 
f  ->  ( abs `  ( ( ( F `
 f )  / 
( f ^ D
) )  -  B
) )  <  e
)  <->  ( d  <_ 
f  ->  ( abs `  ( ( ( F `
 f )  / 
( f ^ D
) )  -  B
) )  <  -u B
) ) )
173172rexralbidv 3058 . . . . 5  |-  ( ( ( ph  /\  -u B  e.  RR+ )  /\  e  =  -u B )  -> 
( E. d  e.  RR+  A. f  e.  RR+  ( d  <_  f  ->  ( abs `  (
( ( F `  f )  /  (
f ^ D ) )  -  B ) )  <  e )  <->  E. d  e.  RR+  A. f  e.  RR+  ( d  <_ 
f  ->  ( abs `  ( ( ( F `
 f )  / 
( f ^ D
) )  -  B
) )  <  -u B
) ) )
17480, 173rspcdv 3312 . . . 4  |-  ( (
ph  /\  -u B  e.  RR+ )  ->  ( A. e  e.  RR+  E. d  e.  RR+  A. f  e.  RR+  ( d  <_  f  ->  ( abs `  (
( ( F `  f )  /  (
f ^ D ) )  -  B ) )  <  e )  ->  E. d  e.  RR+  A. f  e.  RR+  (
d  <_  f  ->  ( abs `  ( ( ( F `  f
)  /  ( f ^ D ) )  -  B ) )  <  -u B ) ) )
175169, 174mpd 15 . . 3  |-  ( (
ph  /\  -u B  e.  RR+ )  ->  E. d  e.  RR+  A. f  e.  RR+  ( d  <_  f  ->  ( abs `  (
( ( F `  f )  /  (
f ^ D ) )  -  B ) )  <  -u B
) )
176114, 175r19.29a 3078 . 2  |-  ( (
ph  /\  -u B  e.  RR+ )  ->  E. z  e.  RR+  ( F `  z )  =  0 )
177 simplr 792 . . . . . 6  |-  ( ( ( ( ph  /\  B  e.  RR+ )  /\  d  e.  RR+ )  /\  A. f  e.  RR+  (
d  <_  f  ->  ( abs `  ( ( ( F `  f
)  /  ( f ^ D ) )  -  B ) )  <  B ) )  ->  d  e.  RR+ )
178 simpr 477 . . . . . 6  |-  ( ( ( ( ph  /\  B  e.  RR+ )  /\  d  e.  RR+ )  /\  A. f  e.  RR+  (
d  <_  f  ->  ( abs `  ( ( ( F `  f
)  /  ( f ^ D ) )  -  B ) )  <  B ) )  ->  A. f  e.  RR+  ( d  <_  f  ->  ( abs `  (
( ( F `  f )  /  (
f ^ D ) )  -  B ) )  <  B ) )
1795ad2antlr 763 . . . . . 6  |-  ( ( ( ( ph  /\  B  e.  RR+ )  /\  d  e.  RR+ )  /\  A. f  e.  RR+  (
d  <_  f  ->  ( abs `  ( ( ( F `  f
)  /  ( f ^ D ) )  -  B ) )  <  B ) )  ->  d  <_  d
)
18014breq1d 4663 . . . . . . . 8  |-  ( ( d  e.  RR+  /\  f  =  d )  -> 
( ( abs `  (
( ( F `  f )  /  (
f ^ D ) )  -  B ) )  <  B  <->  ( abs `  ( ( ( F `
 d )  / 
( d ^ D
) )  -  B
) )  <  B
) )
1819, 180imbi12d 334 . . . . . . 7  |-  ( ( d  e.  RR+  /\  f  =  d )  -> 
( ( d  <_ 
f  ->  ( abs `  ( ( ( F `
 f )  / 
( f ^ D
) )  -  B
) )  <  B
)  <->  ( d  <_ 
d  ->  ( abs `  ( ( ( F `
 d )  / 
( d ^ D
) )  -  B
) )  <  B
) ) )
1827, 181rspcdv 3312 . . . . . 6  |-  ( d  e.  RR+  ->  ( A. f  e.  RR+  ( d  <_  f  ->  ( abs `  ( ( ( F `  f )  /  ( f ^ D ) )  -  B ) )  < 
B )  ->  (
d  <_  d  ->  ( abs `  ( ( ( F `  d
)  /  ( d ^ D ) )  -  B ) )  <  B ) ) )
183177, 178, 179, 182syl3c 66 . . . . 5  |-  ( ( ( ( ph  /\  B  e.  RR+ )  /\  d  e.  RR+ )  /\  A. f  e.  RR+  (
d  <_  f  ->  ( abs `  ( ( ( F `  f
)  /  ( f ^ D ) )  -  B ) )  <  B ) )  ->  ( abs `  (
( ( F `  d )  /  (
d ^ D ) )  -  B ) )  <  B )
18448ad2antrr 762 . . . . . . . . 9  |-  ( ( ( ph  /\  B  e.  RR+ )  /\  d  e.  RR+ )  ->  B  e.  CC )
185184subidd 10380 . . . . . . . 8  |-  ( ( ( ph  /\  B  e.  RR+ )  /\  d  e.  RR+ )  ->  ( B  -  B )  =  0 )
186185adantr 481 . . . . . . 7  |-  ( ( ( ( ph  /\  B  e.  RR+ )  /\  d  e.  RR+ )  /\  ( abs `  ( ( ( F `  d
)  /  ( d ^ D ) )  -  B ) )  <  B )  -> 
( B  -  B
)  =  0 )
18719ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ph  /\  B  e.  RR+ )  /\  d  e.  RR+ )  ->  F  e.  (Poly `  RR )
)
188126a1i 11 . . . . . . . . . . . 12  |-  ( (
ph  /\  B  e.  RR+ )  ->  RR+  C_  RR )
189188sselda 3603 . . . . . . . . . . 11  |-  ( ( ( ph  /\  B  e.  RR+ )  /\  d  e.  RR+ )  ->  d  e.  RR )
190187, 189plyrecld 30626 . . . . . . . . . 10  |-  ( ( ( ph  /\  B  e.  RR+ )  /\  d  e.  RR+ )  ->  ( F `  d )  e.  RR )
19127ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ph  /\  B  e.  RR+ )  /\  d  e.  RR+ )  ->  D  e.  NN0 )
192189, 191reexpcld 13025 . . . . . . . . . 10  |-  ( ( ( ph  /\  B  e.  RR+ )  /\  d  e.  RR+ )  ->  (
d ^ D )  e.  RR )
193189recnd 10068 . . . . . . . . . . 11  |-  ( ( ( ph  /\  B  e.  RR+ )  /\  d  e.  RR+ )  ->  d  e.  CC )
194 simpr 477 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  B  e.  RR+ )  /\  d  e.  RR+ )  ->  d  e.  RR+ )
195194rpne0d 11877 . . . . . . . . . . 11  |-  ( ( ( ph  /\  B  e.  RR+ )  /\  d  e.  RR+ )  ->  d  =/=  0 )
19632ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ph  /\  B  e.  RR+ )  /\  d  e.  RR+ )  ->  D  e.  ZZ )
197193, 195, 196expne0d 13014 . . . . . . . . . 10  |-  ( ( ( ph  /\  B  e.  RR+ )  /\  d  e.  RR+ )  ->  (
d ^ D )  =/=  0 )
198190, 192, 197redivcld 10853 . . . . . . . . 9  |-  ( ( ( ph  /\  B  e.  RR+ )  /\  d  e.  RR+ )  ->  (
( F `  d
)  /  ( d ^ D ) )  e.  RR )
19943ad2antrr 762 . . . . . . . . 9  |-  ( ( ( ph  /\  B  e.  RR+ )  /\  d  e.  RR+ )  ->  B  e.  RR )
200198, 199, 199absdifltd 14172 . . . . . . . 8  |-  ( ( ( ph  /\  B  e.  RR+ )  /\  d  e.  RR+ )  ->  (
( abs `  (
( ( F `  d )  /  (
d ^ D ) )  -  B ) )  <  B  <->  ( ( B  -  B )  <  ( ( F `  d )  /  (
d ^ D ) )  /\  ( ( F `  d )  /  ( d ^ D ) )  < 
( B  +  B
) ) ) )
201200simprbda 653 . . . . . . 7  |-  ( ( ( ( ph  /\  B  e.  RR+ )  /\  d  e.  RR+ )  /\  ( abs `  ( ( ( F `  d
)  /  ( d ^ D ) )  -  B ) )  <  B )  -> 
( B  -  B
)  <  ( ( F `  d )  /  ( d ^ D ) ) )
202186, 201eqbrtrrd 4677 . . . . . 6  |-  ( ( ( ( ph  /\  B  e.  RR+ )  /\  d  e.  RR+ )  /\  ( abs `  ( ( ( F `  d
)  /  ( d ^ D ) )  -  B ) )  <  B )  -> 
0  <  ( ( F `  d )  /  ( d ^ D ) ) )
203194, 196rpexpcld 13032 . . . . . . . 8  |-  ( ( ( ph  /\  B  e.  RR+ )  /\  d  e.  RR+ )  ->  (
d ^ D )  e.  RR+ )
204190, 203gt0divd 11909 . . . . . . 7  |-  ( ( ( ph  /\  B  e.  RR+ )  /\  d  e.  RR+ )  ->  (
0  <  ( F `  d )  <->  0  <  ( ( F `  d
)  /  ( d ^ D ) ) ) )
205204adantr 481 . . . . . 6  |-  ( ( ( ( ph  /\  B  e.  RR+ )  /\  d  e.  RR+ )  /\  ( abs `  ( ( ( F `  d
)  /  ( d ^ D ) )  -  B ) )  <  B )  -> 
( 0  <  ( F `  d )  <->  0  <  ( ( F `
 d )  / 
( d ^ D
) ) ) )
206202, 205mpbird 247 . . . . 5  |-  ( ( ( ( ph  /\  B  e.  RR+ )  /\  d  e.  RR+ )  /\  ( abs `  ( ( ( F `  d
)  /  ( d ^ D ) )  -  B ) )  <  B )  -> 
0  <  ( F `  d ) )
207183, 206syldan 487 . . . 4  |-  ( ( ( ( ph  /\  B  e.  RR+ )  /\  d  e.  RR+ )  /\  A. f  e.  RR+  (
d  <_  f  ->  ( abs `  ( ( ( F `  f
)  /  ( f ^ D ) )  -  B ) )  <  B ) )  ->  0  <  ( F `  d )
)
208 0red 10041 . . . . . 6  |-  ( ( ( ( ph  /\  B  e.  RR+ )  /\  d  e.  RR+ )  /\  0  <  ( F `  d ) )  -> 
0  e.  RR )
209 simplr 792 . . . . . . 7  |-  ( ( ( ( ph  /\  B  e.  RR+ )  /\  d  e.  RR+ )  /\  0  <  ( F `  d ) )  -> 
d  e.  RR+ )
210209rpred 11872 . . . . . 6  |-  ( ( ( ( ph  /\  B  e.  RR+ )  /\  d  e.  RR+ )  /\  0  <  ( F `  d ) )  -> 
d  e.  RR )
211209rpgt0d 11875 . . . . . 6  |-  ( ( ( ( ph  /\  B  e.  RR+ )  /\  d  e.  RR+ )  /\  0  <  ( F `  d ) )  -> 
0  <  d )
21237, 210, 67sylancr 695 . . . . . . 7  |-  ( ( ( ( ph  /\  B  e.  RR+ )  /\  d  e.  RR+ )  /\  0  <  ( F `  d ) )  -> 
( 0 [,] d
)  C_  RR )
213212, 69syl6ss 3615 . . . . . 6  |-  ( ( ( ( ph  /\  B  e.  RR+ )  /\  d  e.  RR+ )  /\  0  <  ( F `  d ) )  -> 
( 0 [,] d
)  C_  CC )
21472ad3antrrr 766 . . . . . 6  |-  ( ( ( ( ph  /\  B  e.  RR+ )  /\  d  e.  RR+ )  /\  0  <  ( F `  d ) )  ->  F  e.  ( CC -cn-> CC ) )
21519ad4antr 768 . . . . . . 7  |-  ( ( ( ( ( ph  /\  B  e.  RR+ )  /\  d  e.  RR+ )  /\  0  <  ( F `
 d ) )  /\  x  e.  ( 0 [,] d ) )  ->  F  e.  (Poly `  RR ) )
216212sselda 3603 . . . . . . 7  |-  ( ( ( ( ( ph  /\  B  e.  RR+ )  /\  d  e.  RR+ )  /\  0  <  ( F `
 d ) )  /\  x  e.  ( 0 [,] d ) )  ->  x  e.  RR )
217215, 216plyrecld 30626 . . . . . 6  |-  ( ( ( ( ( ph  /\  B  e.  RR+ )  /\  d  e.  RR+ )  /\  0  <  ( F `
 d ) )  /\  x  e.  ( 0 [,] d ) )  ->  ( F `  x )  e.  RR )
21896ad3antrrr 766 . . . . . . . 8  |-  ( ( ( ( ph  /\  B  e.  RR+ )  /\  d  e.  RR+ )  /\  0  <  ( F `  d ) )  -> 
( F `  0
)  =  ( C `
 0 ) )
219 simplll 798 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  B  e.  RR+ )  /\  d  e.  RR+ )  /\  0  <  ( F `  d ) )  ->  ph )
220 simpr1 1067 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( B  e.  RR+  /\  d  e.  RR+  /\  0  <  ( F `  d )
) )  ->  B  e.  RR+ )
221220rpgt0d 11875 . . . . . . . . . . 11  |-  ( (
ph  /\  ( B  e.  RR+  /\  d  e.  RR+  /\  0  <  ( F `  d )
) )  ->  0  <  B )
2222213anassrs 1290 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  B  e.  RR+ )  /\  d  e.  RR+ )  /\  0  <  ( F `  d ) )  -> 
0  <  B )
22390, 43, 91mul2lt0rgt0 11933 . . . . . . . . . 10  |-  ( (
ph  /\  0  <  B )  ->  A  <  0 )
224219, 222, 223syl2anc 693 . . . . . . . . 9  |-  ( ( ( ( ph  /\  B  e.  RR+ )  /\  d  e.  RR+ )  /\  0  <  ( F `  d ) )  ->  A  <  0 )
22585, 224syl5eqbrr 4689 . . . . . . . 8  |-  ( ( ( ( ph  /\  B  e.  RR+ )  /\  d  e.  RR+ )  /\  0  <  ( F `  d ) )  -> 
( C `  0
)  <  0 )
226218, 225eqbrtrd 4675 . . . . . . 7  |-  ( ( ( ( ph  /\  B  e.  RR+ )  /\  d  e.  RR+ )  /\  0  <  ( F `  d ) )  -> 
( F `  0
)  <  0 )
227 simpr 477 . . . . . . 7  |-  ( ( ( ( ph  /\  B  e.  RR+ )  /\  d  e.  RR+ )  /\  0  <  ( F `  d ) )  -> 
0  <  ( F `  d ) )
228226, 227jca 554 . . . . . 6  |-  ( ( ( ( ph  /\  B  e.  RR+ )  /\  d  e.  RR+ )  /\  0  <  ( F `  d ) )  -> 
( ( F ` 
0 )  <  0  /\  0  <  ( F `
 d ) ) )
229208, 210, 208, 211, 213, 214, 217, 228ivth 23223 . . . . 5  |-  ( ( ( ( ph  /\  B  e.  RR+ )  /\  d  e.  RR+ )  /\  0  <  ( F `  d ) )  ->  E. z  e.  (
0 (,) d ) ( F `  z
)  =  0 )
230209, 110, 1113syl 18 . . . . 5  |-  ( ( ( ( ph  /\  B  e.  RR+ )  /\  d  e.  RR+ )  /\  0  <  ( F `  d ) )  -> 
( E. z  e.  ( 0 (,) d
) ( F `  z )  =  0  ->  E. z  e.  RR+  ( F `  z )  =  0 ) )
231229, 230mpd 15 . . . 4  |-  ( ( ( ( ph  /\  B  e.  RR+ )  /\  d  e.  RR+ )  /\  0  <  ( F `  d ) )  ->  E. z  e.  RR+  ( F `  z )  =  0 )
232207, 231syldan 487 . . 3  |-  ( ( ( ( ph  /\  B  e.  RR+ )  /\  d  e.  RR+ )  /\  A. f  e.  RR+  (
d  <_  f  ->  ( abs `  ( ( ( F `  f
)  /  ( f ^ D ) )  -  B ) )  <  B ) )  ->  E. z  e.  RR+  ( F `  z )  =  0 )
233168adantr 481 . . . 4  |-  ( (
ph  /\  B  e.  RR+ )  ->  A. e  e.  RR+  E. d  e.  RR+  A. f  e.  RR+  ( d  <_  f  ->  ( abs `  (
( ( F `  f )  /  (
f ^ D ) )  -  B ) )  <  e ) )
234 simpr 477 . . . . 5  |-  ( (
ph  /\  B  e.  RR+ )  ->  B  e.  RR+ )
235 simpr 477 . . . . . . . 8  |-  ( ( ( ph  /\  B  e.  RR+ )  /\  e  =  B )  ->  e  =  B )
236235breq2d 4665 . . . . . . 7  |-  ( ( ( ph  /\  B  e.  RR+ )  /\  e  =  B )  ->  (
( abs `  (
( ( F `  f )  /  (
f ^ D ) )  -  B ) )  <  e  <->  ( abs `  ( ( ( F `
 f )  / 
( f ^ D
) )  -  B
) )  <  B
) )
237236imbi2d 330 . . . . . 6  |-  ( ( ( ph  /\  B  e.  RR+ )  /\  e  =  B )  ->  (
( d  <_  f  ->  ( abs `  (
( ( F `  f )  /  (
f ^ D ) )  -  B ) )  <  e )  <-> 
( d  <_  f  ->  ( abs `  (
( ( F `  f )  /  (
f ^ D ) )  -  B ) )  <  B ) ) )
238237rexralbidv 3058 . . . . 5  |-  ( ( ( ph  /\  B  e.  RR+ )  /\  e  =  B )  ->  ( E. d  e.  RR+  A. f  e.  RR+  ( d  <_ 
f  ->  ( abs `  ( ( ( F `
 f )  / 
( f ^ D
) )  -  B
) )  <  e
)  <->  E. d  e.  RR+  A. f  e.  RR+  (
d  <_  f  ->  ( abs `  ( ( ( F `  f
)  /  ( f ^ D ) )  -  B ) )  <  B ) ) )
239234, 238rspcdv 3312 . . . 4  |-  ( (
ph  /\  B  e.  RR+ )  ->  ( A. e  e.  RR+  E. d  e.  RR+  A. f  e.  RR+  ( d  <_  f  ->  ( abs `  (
( ( F `  f )  /  (
f ^ D ) )  -  B ) )  <  e )  ->  E. d  e.  RR+  A. f  e.  RR+  (
d  <_  f  ->  ( abs `  ( ( ( F `  f
)  /  ( f ^ D ) )  -  B ) )  <  B ) ) )
240233, 239mpd 15 . . 3  |-  ( (
ph  /\  B  e.  RR+ )  ->  E. d  e.  RR+  A. f  e.  RR+  ( d  <_  f  ->  ( abs `  (
( ( F `  f )  /  (
f ^ D ) )  -  B ) )  <  B ) )
241232, 240r19.29a 3078 . 2  |-  ( (
ph  /\  B  e.  RR+ )  ->  E. z  e.  RR+  ( F `  z )  =  0 )
242 signsply0.2 . . . . 5  |-  ( ph  ->  F  =/=  0p )
24324, 38dgreq0 24021 . . . . . . 7  |-  ( F  e.  (Poly `  RR )  ->  ( F  =  0p  <->  ( C `  D )  =  0 ) )
24419, 243syl 17 . . . . . 6  |-  ( ph  ->  ( F  =  0p  <->  ( C `  D )  =  0 ) )
245244necon3bid 2838 . . . . 5  |-  ( ph  ->  ( F  =/=  0p 
<->  ( C `  D
)  =/=  0 ) )
246242, 245mpbid 222 . . . 4  |-  ( ph  ->  ( C `  D
)  =/=  0 )
24736neeq1i 2858 . . . 4  |-  ( B  =/=  0  <->  ( C `  D )  =/=  0
)
248246, 247sylibr 224 . . 3  |-  ( ph  ->  B  =/=  0 )
249 rpneg 11863 . . . . 5  |-  ( ( B  e.  RR  /\  B  =/=  0 )  -> 
( B  e.  RR+  <->  -.  -u B  e.  RR+ )
)
250249biimprd 238 . . . 4  |-  ( ( B  e.  RR  /\  B  =/=  0 )  -> 
( -.  -u B  e.  RR+  ->  B  e.  RR+ ) )
251250orrd 393 . . 3  |-  ( ( B  e.  RR  /\  B  =/=  0 )  -> 
( -u B  e.  RR+  \/  B  e.  RR+ )
)
25243, 248, 251syl2anc 693 . 2  |-  ( ph  ->  ( -u B  e.  RR+  \/  B  e.  RR+ ) )
253176, 241, 252mpjaodan 827 1  |-  ( ph  ->  E. z  e.  RR+  ( F `  z )  =  0 )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   _Vcvv 3200    i^i cin 3573    C_ wss 3574   class class class wbr 4653    |-> cmpt 4729    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650    oFcof 6895   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941   +oocpnf 10071   RR*cxr 10073    < clt 10074    <_ cle 10075    - cmin 10266   -ucneg 10267    / cdiv 10684   NN0cn0 11292   ZZcz 11377   RR+crp 11832   (,)cioo 12175   [,)cico 12177   [,]cicc 12178   ^cexp 12860   abscabs 13974    ~~> r crli 14216   -cn->ccncf 22679   0pc0p 23436  Polycply 23940  coeffccoe 23942  degcdgr 23943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-0p 23437  df-limc 23630  df-dv 23631  df-ply 23944  df-coe 23946  df-dgr 23947  df-log 24303  df-cxp 24304
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator