Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nodenselem8 Structured version   Visualization version   Unicode version

Theorem nodenselem8 31841
Description: Lemma for nodense 31842. Give a condition for surreal less than when two surreals have the same birthday. (Contributed by Scott Fenton, 19-Jun-2011.)
Assertion
Ref Expression
nodenselem8  |-  ( ( A  e.  No  /\  B  e.  No  /\  ( bday `  A )  =  ( bday `  B
) )  ->  ( A <s B  <->  ( ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  1o  /\  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  2o ) ) )
Distinct variable groups:    A, a    B, a

Proof of Theorem nodenselem8
StepHypRef Expression
1 nodenselem5 31838 . . . . 5  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  ( ( bday `  A )  =  (
bday `  B )  /\  A <s B ) )  ->  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  ( bday `  A )
)
21exp32 631 . . . 4  |-  ( ( A  e.  No  /\  B  e.  No )  ->  ( ( bday `  A
)  =  ( bday `  B )  ->  ( A <s B  ->  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  ( bday `  A ) ) ) )
323impia 1261 . . 3  |-  ( ( A  e.  No  /\  B  e.  No  /\  ( bday `  A )  =  ( bday `  B
) )  ->  ( A <s B  ->  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  ( bday `  A ) ) )
4 sltval2 31809 . . . . 5  |-  ( ( A  e.  No  /\  B  e.  No )  ->  ( A <s
B  <->  ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) ) )
543adant3 1081 . . . 4  |-  ( ( A  e.  No  /\  B  e.  No  /\  ( bday `  A )  =  ( bday `  B
) )  ->  ( A <s B  <->  ( A `  |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } ) {
<. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/)
,  2o >. }  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) ) )
6 fvex 6201 . . . . . 6  |-  ( A `
 |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } )  e. 
_V
7 fvex 6201 . . . . . 6  |-  ( B `
 |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } )  e. 
_V
86, 7brtp 31639 . . . . 5  |-  ( ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } )  <->  ( ( ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  1o  /\  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  (/) )  \/  (
( A `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } )  =  1o  /\  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  2o )  \/  ( ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  (/)  /\  ( B `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } )  =  2o ) ) )
9 eleq2 2690 . . . . . . . . . . . . 13  |-  ( (
bday `  A )  =  ( bday `  B
)  ->  ( |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) }  e.  ( bday `  A
)  <->  |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) }  e.  (
bday `  B )
) )
109biimpd 219 . . . . . . . . . . . 12  |-  ( (
bday `  A )  =  ( bday `  B
)  ->  ( |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) }  e.  ( bday `  A
)  ->  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  ( bday `  B )
) )
11 nosgnn0 31811 . . . . . . . . . . . . . . 15  |-  -.  (/)  e.  { 1o ,  2o }
12 nofnbday 31805 . . . . . . . . . . . . . . . . 17  |-  ( B  e.  No  ->  B  Fn  ( bday `  B
) )
13 fnfvelrn 6356 . . . . . . . . . . . . . . . . . 18  |-  ( ( B  Fn  ( bday `  B )  /\  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) }  e.  ( bday `  B
) )  ->  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  e.  ran  B )
14 eleq1 2689 . . . . . . . . . . . . . . . . . 18  |-  ( ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  (/)  ->  ( ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  e.  ran  B  <->  (/)  e.  ran  B ) )
1513, 14syl5ibcom 235 . . . . . . . . . . . . . . . . 17  |-  ( ( B  Fn  ( bday `  B )  /\  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) }  e.  ( bday `  B
) )  ->  (
( B `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } )  =  (/)  ->  (/)  e.  ran  B ) )
1612, 15sylan 488 . . . . . . . . . . . . . . . 16  |-  ( ( B  e.  No  /\  |^|
{ a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  ( bday `  B ) )  -> 
( ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  (/)  -> 
(/)  e.  ran  B ) )
17 norn 31804 . . . . . . . . . . . . . . . . . 18  |-  ( B  e.  No  ->  ran  B 
C_  { 1o ,  2o } )
1817sseld 3602 . . . . . . . . . . . . . . . . 17  |-  ( B  e.  No  ->  ( (/) 
e.  ran  B  ->  (/)  e.  { 1o ,  2o } ) )
1918adantr 481 . . . . . . . . . . . . . . . 16  |-  ( ( B  e.  No  /\  |^|
{ a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  ( bday `  B ) )  -> 
( (/)  e.  ran  B  -> 
(/)  e.  { 1o ,  2o } ) )
2016, 19syld 47 . . . . . . . . . . . . . . 15  |-  ( ( B  e.  No  /\  |^|
{ a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  ( bday `  B ) )  -> 
( ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  (/)  -> 
(/)  e.  { 1o ,  2o } ) )
2111, 20mtoi 190 . . . . . . . . . . . . . 14  |-  ( ( B  e.  No  /\  |^|
{ a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  ( bday `  B ) )  ->  -.  ( B `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } )  =  (/) )
2221ex 450 . . . . . . . . . . . . 13  |-  ( B  e.  No  ->  ( |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  ( bday `  B )  ->  -.  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  (/) ) )
2322adantl 482 . . . . . . . . . . . 12  |-  ( ( A  e.  No  /\  B  e.  No )  ->  ( |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  ( bday `  B )  ->  -.  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  (/) ) )
2410, 23syl9r 78 . . . . . . . . . . 11  |-  ( ( A  e.  No  /\  B  e.  No )  ->  ( ( bday `  A
)  =  ( bday `  B )  ->  ( |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  ( bday `  A )  ->  -.  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  (/) ) ) )
25243impia 1261 . . . . . . . . . 10  |-  ( ( A  e.  No  /\  B  e.  No  /\  ( bday `  A )  =  ( bday `  B
) )  ->  ( |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  ( bday `  A )  ->  -.  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  (/) ) )
2625imp 445 . . . . . . . . 9  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  ( bday `  A )  =  ( bday `  B
) )  /\  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) }  e.  ( bday `  A
) )  ->  -.  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  (/) )
2726intnand 962 . . . . . . . 8  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  ( bday `  A )  =  ( bday `  B
) )  /\  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) }  e.  ( bday `  A
) )  ->  -.  ( ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  1o 
/\  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  (/) ) )
28 nofnbday 31805 . . . . . . . . . . . . 13  |-  ( A  e.  No  ->  A  Fn  ( bday `  A
) )
29 fnfvelrn 6356 . . . . . . . . . . . . . 14  |-  ( ( A  Fn  ( bday `  A )  /\  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) }  e.  ( bday `  A
) )  ->  ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  e.  ran  A )
30 eleq1 2689 . . . . . . . . . . . . . 14  |-  ( ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  (/)  ->  ( ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  e.  ran  A  <->  (/)  e.  ran  A ) )
3129, 30syl5ibcom 235 . . . . . . . . . . . . 13  |-  ( ( A  Fn  ( bday `  A )  /\  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) }  e.  ( bday `  A
) )  ->  (
( A `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } )  =  (/)  ->  (/)  e.  ran  A ) )
3228, 31sylan 488 . . . . . . . . . . . 12  |-  ( ( A  e.  No  /\  |^|
{ a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  ( bday `  A ) )  -> 
( ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  (/)  -> 
(/)  e.  ran  A ) )
33 norn 31804 . . . . . . . . . . . . . 14  |-  ( A  e.  No  ->  ran  A 
C_  { 1o ,  2o } )
3433sseld 3602 . . . . . . . . . . . . 13  |-  ( A  e.  No  ->  ( (/) 
e.  ran  A  ->  (/)  e.  { 1o ,  2o } ) )
3534adantr 481 . . . . . . . . . . . 12  |-  ( ( A  e.  No  /\  |^|
{ a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  ( bday `  A ) )  -> 
( (/)  e.  ran  A  -> 
(/)  e.  { 1o ,  2o } ) )
3632, 35syld 47 . . . . . . . . . . 11  |-  ( ( A  e.  No  /\  |^|
{ a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  ( bday `  A ) )  -> 
( ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  (/)  -> 
(/)  e.  { 1o ,  2o } ) )
3711, 36mtoi 190 . . . . . . . . . 10  |-  ( ( A  e.  No  /\  |^|
{ a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  ( bday `  A ) )  ->  -.  ( A `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } )  =  (/) )
38373ad2antl1 1223 . . . . . . . . 9  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  ( bday `  A )  =  ( bday `  B
) )  /\  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) }  e.  ( bday `  A
) )  ->  -.  ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  (/) )
3938intnanrd 963 . . . . . . . 8  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  ( bday `  A )  =  ( bday `  B
) )  /\  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) }  e.  ( bday `  A
) )  ->  -.  ( ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  (/)  /\  ( B `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } )  =  2o ) )
40 3orel13 31598 . . . . . . . 8  |-  ( ( -.  ( ( A `
 |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } )  =  1o  /\  ( B `
 |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } )  =  (/) )  /\  -.  (
( A `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } )  =  (/)  /\  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  2o ) )  ->  ( ( ( ( A `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } )  =  1o  /\  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  (/) )  \/  (
( A `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } )  =  1o  /\  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  2o )  \/  ( ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  (/)  /\  ( B `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } )  =  2o ) )  ->  ( ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  1o  /\  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  2o ) ) )
4127, 39, 40syl2anc 693 . . . . . . 7  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  ( bday `  A )  =  ( bday `  B
) )  /\  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) }  e.  ( bday `  A
) )  ->  (
( ( ( A `
 |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } )  =  1o  /\  ( B `
 |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } )  =  (/) )  \/  (
( A `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } )  =  1o  /\  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  2o )  \/  ( ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  (/)  /\  ( B `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } )  =  2o ) )  ->  ( ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  1o  /\  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  2o ) ) )
4241ex 450 . . . . . 6  |-  ( ( A  e.  No  /\  B  e.  No  /\  ( bday `  A )  =  ( bday `  B
) )  ->  ( |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  ( bday `  A )  ->  (
( ( ( A `
 |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } )  =  1o  /\  ( B `
 |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } )  =  (/) )  \/  (
( A `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } )  =  1o  /\  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  2o )  \/  ( ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  (/)  /\  ( B `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } )  =  2o ) )  ->  ( ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  1o  /\  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  2o ) ) ) )
4342com23 86 . . . . 5  |-  ( ( A  e.  No  /\  B  e.  No  /\  ( bday `  A )  =  ( bday `  B
) )  ->  (
( ( ( A `
 |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } )  =  1o  /\  ( B `
 |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } )  =  (/) )  \/  (
( A `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } )  =  1o  /\  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  2o )  \/  ( ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  (/)  /\  ( B `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } )  =  2o ) )  ->  ( |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) }  e.  ( bday `  A
)  ->  ( ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  1o  /\  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  2o ) ) ) )
448, 43syl5bi 232 . . . 4  |-  ( ( A  e.  No  /\  B  e.  No  /\  ( bday `  A )  =  ( bday `  B
) )  ->  (
( A `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } ) { <. 1o ,  (/)
>. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  ->  ( |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  ( bday `  A )  ->  (
( A `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } )  =  1o  /\  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  2o ) ) ) )
455, 44sylbid 230 . . 3  |-  ( ( A  e.  No  /\  B  e.  No  /\  ( bday `  A )  =  ( bday `  B
) )  ->  ( A <s B  -> 
( |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) }  e.  (
bday `  A )  ->  ( ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  1o 
/\  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  2o ) ) ) )
463, 45mpdd 43 . 2  |-  ( ( A  e.  No  /\  B  e.  No  /\  ( bday `  A )  =  ( bday `  B
) )  ->  ( A <s B  -> 
( ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  1o 
/\  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  2o ) ) )
47 3mix2 1231 . . . 4  |-  ( ( ( A `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } )  =  1o  /\  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  2o )  -> 
( ( ( A `
 |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } )  =  1o  /\  ( B `
 |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } )  =  (/) )  \/  (
( A `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } )  =  1o  /\  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  2o )  \/  ( ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  (/)  /\  ( B `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } )  =  2o ) ) )
4847, 8sylibr 224 . . 3  |-  ( ( ( A `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } )  =  1o  /\  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  2o )  -> 
( A `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } ) { <. 1o ,  (/)
>. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) )
4948, 5syl5ibr 236 . 2  |-  ( ( A  e.  No  /\  B  e.  No  /\  ( bday `  A )  =  ( bday `  B
) )  ->  (
( ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  1o 
/\  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  2o )  ->  A <s B ) )
5046, 49impbid 202 1  |-  ( ( A  e.  No  /\  B  e.  No  /\  ( bday `  A )  =  ( bday `  B
) )  ->  ( A <s B  <->  ( ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  1o  /\  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  2o ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    \/ w3o 1036    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   {crab 2916   (/)c0 3915   {cpr 4179   {ctp 4181   <.cop 4183   |^|cint 4475   class class class wbr 4653   ran crn 5115   Oncon0 5723    Fn wfn 5883   ` cfv 5888   1oc1o 7553   2oc2o 7554   Nocsur 31793   <scslt 31794   bdaycbday 31795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-1o 7560  df-2o 7561  df-no 31796  df-slt 31797  df-bday 31798
This theorem is referenced by:  nodense  31842
  Copyright terms: Public domain W3C validator