Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nolesgn2ores Structured version   Visualization version   Unicode version

Theorem nolesgn2ores 31825
Description: Given  A less than or equal to  B, equal to  B up to 
X, and  A ( X )  =  2o, then  ( A  |`  suc  X )  =  ( B  |`  suc  X ). (Contributed by Scott Fenton, 6-Dec-2021.)
Assertion
Ref Expression
nolesgn2ores  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( ( A  |`  X )  =  ( B  |`  X )  /\  ( A `  X
)  =  2o )  /\  -.  B <s A )  -> 
( A  |`  suc  X
)  =  ( B  |`  suc  X ) )

Proof of Theorem nolesgn2ores
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 dmres 5419 . . . 4  |-  dom  ( A  |`  suc  X )  =  ( suc  X  i^i  dom  A )
2 simp11 1091 . . . . . . 7  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( ( A  |`  X )  =  ( B  |`  X )  /\  ( A `  X
)  =  2o )  /\  -.  B <s A )  ->  A  e.  No )
3 nodmord 31806 . . . . . . 7  |-  ( A  e.  No  ->  Ord  dom 
A )
42, 3syl 17 . . . . . 6  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( ( A  |`  X )  =  ( B  |`  X )  /\  ( A `  X
)  =  2o )  /\  -.  B <s A )  ->  Ord  dom  A )
5 ndmfv 6218 . . . . . . . . . 10  |-  ( -.  X  e.  dom  A  ->  ( A `  X
)  =  (/) )
6 2on 7568 . . . . . . . . . . . . . . 15  |-  2o  e.  On
76elexi 3213 . . . . . . . . . . . . . 14  |-  2o  e.  _V
87prid2 4298 . . . . . . . . . . . . 13  |-  2o  e.  { 1o ,  2o }
98nosgnn0i 31812 . . . . . . . . . . . 12  |-  (/)  =/=  2o
10 neeq1 2856 . . . . . . . . . . . 12  |-  ( ( A `  X )  =  (/)  ->  ( ( A `  X )  =/=  2o  <->  (/)  =/=  2o ) )
119, 10mpbiri 248 . . . . . . . . . . 11  |-  ( ( A `  X )  =  (/)  ->  ( A `
 X )  =/= 
2o )
1211neneqd 2799 . . . . . . . . . 10  |-  ( ( A `  X )  =  (/)  ->  -.  ( A `  X )  =  2o )
135, 12syl 17 . . . . . . . . 9  |-  ( -.  X  e.  dom  A  ->  -.  ( A `  X )  =  2o )
1413con4i 113 . . . . . . . 8  |-  ( ( A `  X )  =  2o  ->  X  e.  dom  A )
1514adantl 482 . . . . . . 7  |-  ( ( ( A  |`  X )  =  ( B  |`  X )  /\  ( A `  X )  =  2o )  ->  X  e.  dom  A )
16153ad2ant2 1083 . . . . . 6  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( ( A  |`  X )  =  ( B  |`  X )  /\  ( A `  X
)  =  2o )  /\  -.  B <s A )  ->  X  e.  dom  A )
17 ordsucss 7018 . . . . . 6  |-  ( Ord 
dom  A  ->  ( X  e.  dom  A  ->  suc  X  C_  dom  A ) )
184, 16, 17sylc 65 . . . . 5  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( ( A  |`  X )  =  ( B  |`  X )  /\  ( A `  X
)  =  2o )  /\  -.  B <s A )  ->  suc  X  C_  dom  A )
19 df-ss 3588 . . . . 5  |-  ( suc 
X  C_  dom  A  <->  ( suc  X  i^i  dom  A )  =  suc  X )
2018, 19sylib 208 . . . 4  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( ( A  |`  X )  =  ( B  |`  X )  /\  ( A `  X
)  =  2o )  /\  -.  B <s A )  -> 
( suc  X  i^i  dom 
A )  =  suc  X )
211, 20syl5eq 2668 . . 3  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( ( A  |`  X )  =  ( B  |`  X )  /\  ( A `  X
)  =  2o )  /\  -.  B <s A )  ->  dom  ( A  |`  suc  X
)  =  suc  X
)
22 dmres 5419 . . . 4  |-  dom  ( B  |`  suc  X )  =  ( suc  X  i^i  dom  B )
23 simp12 1092 . . . . . . 7  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( ( A  |`  X )  =  ( B  |`  X )  /\  ( A `  X
)  =  2o )  /\  -.  B <s A )  ->  B  e.  No )
24 nodmord 31806 . . . . . . 7  |-  ( B  e.  No  ->  Ord  dom 
B )
2523, 24syl 17 . . . . . 6  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( ( A  |`  X )  =  ( B  |`  X )  /\  ( A `  X
)  =  2o )  /\  -.  B <s A )  ->  Ord  dom  B )
26 nolesgn2o 31824 . . . . . . 7  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( ( A  |`  X )  =  ( B  |`  X )  /\  ( A `  X
)  =  2o )  /\  -.  B <s A )  -> 
( B `  X
)  =  2o )
27 ndmfv 6218 . . . . . . . . 9  |-  ( -.  X  e.  dom  B  ->  ( B `  X
)  =  (/) )
28 neeq1 2856 . . . . . . . . . . 11  |-  ( ( B `  X )  =  (/)  ->  ( ( B `  X )  =/=  2o  <->  (/)  =/=  2o ) )
299, 28mpbiri 248 . . . . . . . . . 10  |-  ( ( B `  X )  =  (/)  ->  ( B `
 X )  =/= 
2o )
3029neneqd 2799 . . . . . . . . 9  |-  ( ( B `  X )  =  (/)  ->  -.  ( B `  X )  =  2o )
3127, 30syl 17 . . . . . . . 8  |-  ( -.  X  e.  dom  B  ->  -.  ( B `  X )  =  2o )
3231con4i 113 . . . . . . 7  |-  ( ( B `  X )  =  2o  ->  X  e.  dom  B )
3326, 32syl 17 . . . . . 6  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( ( A  |`  X )  =  ( B  |`  X )  /\  ( A `  X
)  =  2o )  /\  -.  B <s A )  ->  X  e.  dom  B )
34 ordsucss 7018 . . . . . 6  |-  ( Ord 
dom  B  ->  ( X  e.  dom  B  ->  suc  X  C_  dom  B ) )
3525, 33, 34sylc 65 . . . . 5  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( ( A  |`  X )  =  ( B  |`  X )  /\  ( A `  X
)  =  2o )  /\  -.  B <s A )  ->  suc  X  C_  dom  B )
36 df-ss 3588 . . . . 5  |-  ( suc 
X  C_  dom  B  <->  ( suc  X  i^i  dom  B )  =  suc  X )
3735, 36sylib 208 . . . 4  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( ( A  |`  X )  =  ( B  |`  X )  /\  ( A `  X
)  =  2o )  /\  -.  B <s A )  -> 
( suc  X  i^i  dom 
B )  =  suc  X )
3822, 37syl5eq 2668 . . 3  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( ( A  |`  X )  =  ( B  |`  X )  /\  ( A `  X
)  =  2o )  /\  -.  B <s A )  ->  dom  ( B  |`  suc  X
)  =  suc  X
)
3921, 38eqtr4d 2659 . 2  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( ( A  |`  X )  =  ( B  |`  X )  /\  ( A `  X
)  =  2o )  /\  -.  B <s A )  ->  dom  ( A  |`  suc  X
)  =  dom  ( B  |`  suc  X ) )
4021eleq2d 2687 . . . 4  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( ( A  |`  X )  =  ( B  |`  X )  /\  ( A `  X
)  =  2o )  /\  -.  B <s A )  -> 
( x  e.  dom  ( A  |`  suc  X
)  <->  x  e.  suc  X ) )
41 vex 3203 . . . . . . . . 9  |-  x  e. 
_V
4241elsuc 5794 . . . . . . . 8  |-  ( x  e.  suc  X  <->  ( x  e.  X  \/  x  =  X ) )
43 simp2l 1087 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( ( A  |`  X )  =  ( B  |`  X )  /\  ( A `  X
)  =  2o )  /\  -.  B <s A )  -> 
( A  |`  X )  =  ( B  |`  X ) )
4443fveq1d 6193 . . . . . . . . . . . 12  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( ( A  |`  X )  =  ( B  |`  X )  /\  ( A `  X
)  =  2o )  /\  -.  B <s A )  -> 
( ( A  |`  X ) `  x
)  =  ( ( B  |`  X ) `  x ) )
4544adantr 481 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  (
( A  |`  X )  =  ( B  |`  X )  /\  ( A `  X )  =  2o )  /\  -.  B <s A )  /\  x  e.  X
)  ->  ( ( A  |`  X ) `  x )  =  ( ( B  |`  X ) `
 x ) )
46 simpr 477 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  (
( A  |`  X )  =  ( B  |`  X )  /\  ( A `  X )  =  2o )  /\  -.  B <s A )  /\  x  e.  X
)  ->  x  e.  X )
4746fvresd 6208 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  (
( A  |`  X )  =  ( B  |`  X )  /\  ( A `  X )  =  2o )  /\  -.  B <s A )  /\  x  e.  X
)  ->  ( ( A  |`  X ) `  x )  =  ( A `  x ) )
4846fvresd 6208 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  (
( A  |`  X )  =  ( B  |`  X )  /\  ( A `  X )  =  2o )  /\  -.  B <s A )  /\  x  e.  X
)  ->  ( ( B  |`  X ) `  x )  =  ( B `  x ) )
4945, 47, 483eqtr3d 2664 . . . . . . . . . 10  |-  ( ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  (
( A  |`  X )  =  ( B  |`  X )  /\  ( A `  X )  =  2o )  /\  -.  B <s A )  /\  x  e.  X
)  ->  ( A `  x )  =  ( B `  x ) )
5049ex 450 . . . . . . . . 9  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( ( A  |`  X )  =  ( B  |`  X )  /\  ( A `  X
)  =  2o )  /\  -.  B <s A )  -> 
( x  e.  X  ->  ( A `  x
)  =  ( B `
 x ) ) )
51 simp2r 1088 . . . . . . . . . . 11  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( ( A  |`  X )  =  ( B  |`  X )  /\  ( A `  X
)  =  2o )  /\  -.  B <s A )  -> 
( A `  X
)  =  2o )
5251, 26eqtr4d 2659 . . . . . . . . . 10  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( ( A  |`  X )  =  ( B  |`  X )  /\  ( A `  X
)  =  2o )  /\  -.  B <s A )  -> 
( A `  X
)  =  ( B `
 X ) )
53 fveq2 6191 . . . . . . . . . . 11  |-  ( x  =  X  ->  ( A `  x )  =  ( A `  X ) )
54 fveq2 6191 . . . . . . . . . . 11  |-  ( x  =  X  ->  ( B `  x )  =  ( B `  X ) )
5553, 54eqeq12d 2637 . . . . . . . . . 10  |-  ( x  =  X  ->  (
( A `  x
)  =  ( B `
 x )  <->  ( A `  X )  =  ( B `  X ) ) )
5652, 55syl5ibrcom 237 . . . . . . . . 9  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( ( A  |`  X )  =  ( B  |`  X )  /\  ( A `  X
)  =  2o )  /\  -.  B <s A )  -> 
( x  =  X  ->  ( A `  x )  =  ( B `  x ) ) )
5750, 56jaod 395 . . . . . . . 8  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( ( A  |`  X )  =  ( B  |`  X )  /\  ( A `  X
)  =  2o )  /\  -.  B <s A )  -> 
( ( x  e.  X  \/  x  =  X )  ->  ( A `  x )  =  ( B `  x ) ) )
5842, 57syl5bi 232 . . . . . . 7  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( ( A  |`  X )  =  ( B  |`  X )  /\  ( A `  X
)  =  2o )  /\  -.  B <s A )  -> 
( x  e.  suc  X  ->  ( A `  x )  =  ( B `  x ) ) )
5958imp 445 . . . . . 6  |-  ( ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  (
( A  |`  X )  =  ( B  |`  X )  /\  ( A `  X )  =  2o )  /\  -.  B <s A )  /\  x  e.  suc  X )  ->  ( A `  x )  =  ( B `  x ) )
60 simpr 477 . . . . . . 7  |-  ( ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  (
( A  |`  X )  =  ( B  |`  X )  /\  ( A `  X )  =  2o )  /\  -.  B <s A )  /\  x  e.  suc  X )  ->  x  e.  suc  X )
6160fvresd 6208 . . . . . 6  |-  ( ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  (
( A  |`  X )  =  ( B  |`  X )  /\  ( A `  X )  =  2o )  /\  -.  B <s A )  /\  x  e.  suc  X )  ->  ( ( A  |`  suc  X ) `
 x )  =  ( A `  x
) )
6260fvresd 6208 . . . . . 6  |-  ( ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  (
( A  |`  X )  =  ( B  |`  X )  /\  ( A `  X )  =  2o )  /\  -.  B <s A )  /\  x  e.  suc  X )  ->  ( ( B  |`  suc  X ) `
 x )  =  ( B `  x
) )
6359, 61, 623eqtr4d 2666 . . . . 5  |-  ( ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  (
( A  |`  X )  =  ( B  |`  X )  /\  ( A `  X )  =  2o )  /\  -.  B <s A )  /\  x  e.  suc  X )  ->  ( ( A  |`  suc  X ) `
 x )  =  ( ( B  |`  suc  X ) `  x
) )
6463ex 450 . . . 4  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( ( A  |`  X )  =  ( B  |`  X )  /\  ( A `  X
)  =  2o )  /\  -.  B <s A )  -> 
( x  e.  suc  X  ->  ( ( A  |`  suc  X ) `  x )  =  ( ( B  |`  suc  X
) `  x )
) )
6540, 64sylbid 230 . . 3  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( ( A  |`  X )  =  ( B  |`  X )  /\  ( A `  X
)  =  2o )  /\  -.  B <s A )  -> 
( x  e.  dom  ( A  |`  suc  X
)  ->  ( ( A  |`  suc  X ) `
 x )  =  ( ( B  |`  suc  X ) `  x
) ) )
6665ralrimiv 2965 . 2  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( ( A  |`  X )  =  ( B  |`  X )  /\  ( A `  X
)  =  2o )  /\  -.  B <s A )  ->  A. x  e.  dom  ( A  |`  suc  X
) ( ( A  |`  suc  X ) `  x )  =  ( ( B  |`  suc  X
) `  x )
)
67 nofun 31802 . . . 4  |-  ( A  e.  No  ->  Fun  A )
68 funres 5929 . . . 4  |-  ( Fun 
A  ->  Fun  ( A  |`  suc  X ) )
692, 67, 683syl 18 . . 3  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( ( A  |`  X )  =  ( B  |`  X )  /\  ( A `  X
)  =  2o )  /\  -.  B <s A )  ->  Fun  ( A  |`  suc  X
) )
70 nofun 31802 . . . 4  |-  ( B  e.  No  ->  Fun  B )
71 funres 5929 . . . 4  |-  ( Fun 
B  ->  Fun  ( B  |`  suc  X ) )
7223, 70, 713syl 18 . . 3  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( ( A  |`  X )  =  ( B  |`  X )  /\  ( A `  X
)  =  2o )  /\  -.  B <s A )  ->  Fun  ( B  |`  suc  X
) )
73 eqfunfv 6316 . . 3  |-  ( ( Fun  ( A  |`  suc  X )  /\  Fun  ( B  |`  suc  X
) )  ->  (
( A  |`  suc  X
)  =  ( B  |`  suc  X )  <->  ( dom  ( A  |`  suc  X
)  =  dom  ( B  |`  suc  X )  /\  A. x  e. 
dom  ( A  |`  suc  X ) ( ( A  |`  suc  X ) `
 x )  =  ( ( B  |`  suc  X ) `  x
) ) ) )
7469, 72, 73syl2anc 693 . 2  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( ( A  |`  X )  =  ( B  |`  X )  /\  ( A `  X
)  =  2o )  /\  -.  B <s A )  -> 
( ( A  |`  suc  X )  =  ( B  |`  suc  X )  <-> 
( dom  ( A  |` 
suc  X )  =  dom  ( B  |`  suc  X )  /\  A. x  e.  dom  ( A  |`  suc  X ) ( ( A  |`  suc  X
) `  x )  =  ( ( B  |`  suc  X ) `  x ) ) ) )
7539, 66, 74mpbir2and 957 1  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( ( A  |`  X )  =  ( B  |`  X )  /\  ( A `  X
)  =  2o )  /\  -.  B <s A )  -> 
( A  |`  suc  X
)  =  ( B  |`  suc  X ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912    i^i cin 3573    C_ wss 3574   (/)c0 3915   class class class wbr 4653   dom cdm 5114    |` cres 5116   Ord word 5722   Oncon0 5723   suc csuc 5725   Fun wfun 5882   ` cfv 5888   1oc1o 7553   2oc2o 7554   Nocsur 31793   <scslt 31794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-1o 7560  df-2o 7561  df-no 31796  df-slt 31797
This theorem is referenced by:  nosupbnd1lem3  31856
  Copyright terms: Public domain W3C validator