| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nolesgn2ores | Structured version Visualization version Unicode version | ||
| Description: Given |
| Ref | Expression |
|---|---|
| nolesgn2ores |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmres 5419 |
. . . 4
| |
| 2 | simp11 1091 |
. . . . . . 7
| |
| 3 | nodmord 31806 |
. . . . . . 7
| |
| 4 | 2, 3 | syl 17 |
. . . . . 6
|
| 5 | ndmfv 6218 |
. . . . . . . . . 10
| |
| 6 | 2on 7568 |
. . . . . . . . . . . . . . 15
| |
| 7 | 6 | elexi 3213 |
. . . . . . . . . . . . . 14
|
| 8 | 7 | prid2 4298 |
. . . . . . . . . . . . 13
|
| 9 | 8 | nosgnn0i 31812 |
. . . . . . . . . . . 12
|
| 10 | neeq1 2856 |
. . . . . . . . . . . 12
| |
| 11 | 9, 10 | mpbiri 248 |
. . . . . . . . . . 11
|
| 12 | 11 | neneqd 2799 |
. . . . . . . . . 10
|
| 13 | 5, 12 | syl 17 |
. . . . . . . . 9
|
| 14 | 13 | con4i 113 |
. . . . . . . 8
|
| 15 | 14 | adantl 482 |
. . . . . . 7
|
| 16 | 15 | 3ad2ant2 1083 |
. . . . . 6
|
| 17 | ordsucss 7018 |
. . . . . 6
| |
| 18 | 4, 16, 17 | sylc 65 |
. . . . 5
|
| 19 | df-ss 3588 |
. . . . 5
| |
| 20 | 18, 19 | sylib 208 |
. . . 4
|
| 21 | 1, 20 | syl5eq 2668 |
. . 3
|
| 22 | dmres 5419 |
. . . 4
| |
| 23 | simp12 1092 |
. . . . . . 7
| |
| 24 | nodmord 31806 |
. . . . . . 7
| |
| 25 | 23, 24 | syl 17 |
. . . . . 6
|
| 26 | nolesgn2o 31824 |
. . . . . . 7
| |
| 27 | ndmfv 6218 |
. . . . . . . . 9
| |
| 28 | neeq1 2856 |
. . . . . . . . . . 11
| |
| 29 | 9, 28 | mpbiri 248 |
. . . . . . . . . 10
|
| 30 | 29 | neneqd 2799 |
. . . . . . . . 9
|
| 31 | 27, 30 | syl 17 |
. . . . . . . 8
|
| 32 | 31 | con4i 113 |
. . . . . . 7
|
| 33 | 26, 32 | syl 17 |
. . . . . 6
|
| 34 | ordsucss 7018 |
. . . . . 6
| |
| 35 | 25, 33, 34 | sylc 65 |
. . . . 5
|
| 36 | df-ss 3588 |
. . . . 5
| |
| 37 | 35, 36 | sylib 208 |
. . . 4
|
| 38 | 22, 37 | syl5eq 2668 |
. . 3
|
| 39 | 21, 38 | eqtr4d 2659 |
. 2
|
| 40 | 21 | eleq2d 2687 |
. . . 4
|
| 41 | vex 3203 |
. . . . . . . . 9
| |
| 42 | 41 | elsuc 5794 |
. . . . . . . 8
|
| 43 | simp2l 1087 |
. . . . . . . . . . . . 13
| |
| 44 | 43 | fveq1d 6193 |
. . . . . . . . . . . 12
|
| 45 | 44 | adantr 481 |
. . . . . . . . . . 11
|
| 46 | simpr 477 |
. . . . . . . . . . . 12
| |
| 47 | 46 | fvresd 6208 |
. . . . . . . . . . 11
|
| 48 | 46 | fvresd 6208 |
. . . . . . . . . . 11
|
| 49 | 45, 47, 48 | 3eqtr3d 2664 |
. . . . . . . . . 10
|
| 50 | 49 | ex 450 |
. . . . . . . . 9
|
| 51 | simp2r 1088 |
. . . . . . . . . . 11
| |
| 52 | 51, 26 | eqtr4d 2659 |
. . . . . . . . . 10
|
| 53 | fveq2 6191 |
. . . . . . . . . . 11
| |
| 54 | fveq2 6191 |
. . . . . . . . . . 11
| |
| 55 | 53, 54 | eqeq12d 2637 |
. . . . . . . . . 10
|
| 56 | 52, 55 | syl5ibrcom 237 |
. . . . . . . . 9
|
| 57 | 50, 56 | jaod 395 |
. . . . . . . 8
|
| 58 | 42, 57 | syl5bi 232 |
. . . . . . 7
|
| 59 | 58 | imp 445 |
. . . . . 6
|
| 60 | simpr 477 |
. . . . . . 7
| |
| 61 | 60 | fvresd 6208 |
. . . . . 6
|
| 62 | 60 | fvresd 6208 |
. . . . . 6
|
| 63 | 59, 61, 62 | 3eqtr4d 2666 |
. . . . 5
|
| 64 | 63 | ex 450 |
. . . 4
|
| 65 | 40, 64 | sylbid 230 |
. . 3
|
| 66 | 65 | ralrimiv 2965 |
. 2
|
| 67 | nofun 31802 |
. . . 4
| |
| 68 | funres 5929 |
. . . 4
| |
| 69 | 2, 67, 68 | 3syl 18 |
. . 3
|
| 70 | nofun 31802 |
. . . 4
| |
| 71 | funres 5929 |
. . . 4
| |
| 72 | 23, 70, 71 | 3syl 18 |
. . 3
|
| 73 | eqfunfv 6316 |
. . 3
| |
| 74 | 69, 72, 73 | syl2anc 693 |
. 2
|
| 75 | 39, 66, 74 | mpbir2and 957 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-ord 5726 df-on 5727 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-1o 7560 df-2o 7561 df-no 31796 df-slt 31797 |
| This theorem is referenced by: nosupbnd1lem3 31856 |
| Copyright terms: Public domain | W3C validator |