Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nosep1o Structured version   Visualization version   Unicode version

Theorem nosep1o 31832
Description: If the value of a surreal at a separator is  1o then the surreal is lesser. (Contributed by Scott Fenton, 7-Dec-2021.)
Assertion
Ref Expression
nosep1o  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  A  =/=  B )  /\  ( A `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  1o )  ->  A <s B )
Distinct variable groups:    x, A    x, B

Proof of Theorem nosep1o
StepHypRef Expression
1 simpr 477 . . 3  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  A  =/=  B )  /\  ( A `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  1o )  ->  ( A `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  1o )
2 nosepne 31831 . . . . . . . . . . . 12  |-  ( ( A  e.  No  /\  B  e.  No  /\  A  =/=  B )  ->  ( A `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =/=  ( B `  |^| { x  e.  On  | 
( A `  x
)  =/=  ( B `
 x ) } ) )
32adantr 481 . . . . . . . . . . 11  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  A  =/=  B )  /\  ( A `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  1o )  ->  ( A `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =/=  ( B `  |^| { x  e.  On  | 
( A `  x
)  =/=  ( B `
 x ) } ) )
41, 3eqnetrrd 2862 . . . . . . . . . 10  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  A  =/=  B )  /\  ( A `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  1o )  ->  1o  =/=  ( B `  |^| { x  e.  On  | 
( A `  x
)  =/=  ( B `
 x ) } ) )
54necomd 2849 . . . . . . . . 9  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  A  =/=  B )  /\  ( A `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  1o )  ->  ( B `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =/= 
1o )
65neneqd 2799 . . . . . . . 8  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  A  =/=  B )  /\  ( A `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  1o )  ->  -.  ( B `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  1o )
7 simpl2 1065 . . . . . . . . 9  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  A  =/=  B )  /\  ( A `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  1o )  ->  B  e.  No )
8 nofv 31810 . . . . . . . . 9  |-  ( B  e.  No  ->  (
( B `  |^| { x  e.  On  | 
( A `  x
)  =/=  ( B `
 x ) } )  =  (/)  \/  ( B `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  1o  \/  ( B `
 |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  2o ) )
97, 8syl 17 . . . . . . . 8  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  A  =/=  B )  /\  ( A `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  1o )  ->  (
( B `  |^| { x  e.  On  | 
( A `  x
)  =/=  ( B `
 x ) } )  =  (/)  \/  ( B `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  1o  \/  ( B `
 |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  2o ) )
10 3orel2 31592 . . . . . . . 8  |-  ( -.  ( B `  |^| { x  e.  On  | 
( A `  x
)  =/=  ( B `
 x ) } )  =  1o  ->  ( ( ( B `  |^| { x  e.  On  |  ( A `  x )  =/=  ( B `  x ) } )  =  (/)  \/  ( B `  |^| { x  e.  On  | 
( A `  x
)  =/=  ( B `
 x ) } )  =  1o  \/  ( B `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  2o )  ->  (
( B `  |^| { x  e.  On  | 
( A `  x
)  =/=  ( B `
 x ) } )  =  (/)  \/  ( B `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  2o ) ) )
116, 9, 10sylc 65 . . . . . . 7  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  A  =/=  B )  /\  ( A `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  1o )  ->  (
( B `  |^| { x  e.  On  | 
( A `  x
)  =/=  ( B `
 x ) } )  =  (/)  \/  ( B `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  2o ) )
12 eqid 2622 . . . . . . 7  |-  1o  =  1o
1311, 12jctil 560 . . . . . 6  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  A  =/=  B )  /\  ( A `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  1o )  ->  ( 1o  =  1o  /\  (
( B `  |^| { x  e.  On  | 
( A `  x
)  =/=  ( B `
 x ) } )  =  (/)  \/  ( B `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  2o ) ) )
14 andi 911 . . . . . 6  |-  ( ( 1o  =  1o  /\  ( ( B `  |^| { x  e.  On  |  ( A `  x )  =/=  ( B `  x ) } )  =  (/)  \/  ( B `  |^| { x  e.  On  | 
( A `  x
)  =/=  ( B `
 x ) } )  =  2o ) )  <->  ( ( 1o  =  1o  /\  ( B `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  (/) )  \/  ( 1o  =  1o  /\  ( B `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  2o ) ) )
1513, 14sylib 208 . . . . 5  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  A  =/=  B )  /\  ( A `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  1o )  ->  (
( 1o  =  1o 
/\  ( B `  |^| { x  e.  On  |  ( A `  x )  =/=  ( B `  x ) } )  =  (/) )  \/  ( 1o  =  1o  /\  ( B `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  2o ) ) )
16 3mix1 1230 . . . . . 6  |-  ( ( 1o  =  1o  /\  ( B `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  (/) )  ->  ( ( 1o  =  1o  /\  ( B `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  (/) )  \/  ( 1o  =  1o  /\  ( B `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  2o )  \/  ( 1o  =  (/)  /\  ( B `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  2o ) ) )
17 3mix2 1231 . . . . . 6  |-  ( ( 1o  =  1o  /\  ( B `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  2o )  ->  (
( 1o  =  1o 
/\  ( B `  |^| { x  e.  On  |  ( A `  x )  =/=  ( B `  x ) } )  =  (/) )  \/  ( 1o  =  1o  /\  ( B `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  2o )  \/  ( 1o  =  (/)  /\  ( B `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  2o ) ) )
1816, 17jaoi 394 . . . . 5  |-  ( ( ( 1o  =  1o 
/\  ( B `  |^| { x  e.  On  |  ( A `  x )  =/=  ( B `  x ) } )  =  (/) )  \/  ( 1o  =  1o  /\  ( B `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  2o ) )  -> 
( ( 1o  =  1o  /\  ( B `  |^| { x  e.  On  |  ( A `  x )  =/=  ( B `  x ) } )  =  (/) )  \/  ( 1o  =  1o  /\  ( B `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  2o )  \/  ( 1o  =  (/)  /\  ( B `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  2o ) ) )
1915, 18syl 17 . . . 4  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  A  =/=  B )  /\  ( A `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  1o )  ->  (
( 1o  =  1o 
/\  ( B `  |^| { x  e.  On  |  ( A `  x )  =/=  ( B `  x ) } )  =  (/) )  \/  ( 1o  =  1o  /\  ( B `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  2o )  \/  ( 1o  =  (/)  /\  ( B `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  2o ) ) )
20 1on 7567 . . . . . 6  |-  1o  e.  On
2120elexi 3213 . . . . 5  |-  1o  e.  _V
22 fvex 6201 . . . . 5  |-  ( B `
 |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  e. 
_V
2321, 22brtp 31639 . . . 4  |-  ( 1o { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  |^| { x  e.  On  | 
( A `  x
)  =/=  ( B `
 x ) } )  <->  ( ( 1o  =  1o  /\  ( B `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  (/) )  \/  ( 1o  =  1o  /\  ( B `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  2o )  \/  ( 1o  =  (/)  /\  ( B `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  2o ) ) )
2419, 23sylibr 224 . . 3  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  A  =/=  B )  /\  ( A `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  1o )  ->  1o { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  |^| { x  e.  On  | 
( A `  x
)  =/=  ( B `
 x ) } ) )
251, 24eqbrtrd 4675 . 2  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  A  =/=  B )  /\  ( A `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  1o )  ->  ( A `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } ) {
<. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/)
,  2o >. }  ( B `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } ) )
26 simpl1 1064 . . 3  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  A  =/=  B )  /\  ( A `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  1o )  ->  A  e.  No )
27 sltval2 31809 . . 3  |-  ( ( A  e.  No  /\  B  e.  No )  ->  ( A <s
B  <->  ( A `  |^| { x  e.  On  |  ( A `  x )  =/=  ( B `  x ) } ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  |^| { x  e.  On  |  ( A `  x )  =/=  ( B `  x ) } ) ) )
2826, 7, 27syl2anc 693 . 2  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  A  =/=  B )  /\  ( A `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  1o )  ->  ( A <s B  <->  ( A `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } ) {
<. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/)
,  2o >. }  ( B `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } ) ) )
2925, 28mpbird 247 1  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  A  =/=  B )  /\  ( A `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  1o )  ->  A <s B )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    \/ w3o 1036    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   {crab 2916   (/)c0 3915   {ctp 4181   <.cop 4183   |^|cint 4475   class class class wbr 4653   Oncon0 5723   ` cfv 5888   1oc1o 7553   2oc2o 7554   Nocsur 31793   <scslt 31794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-1o 7560  df-2o 7561  df-no 31796  df-slt 31797
This theorem is referenced by:  noetalem3  31865
  Copyright terms: Public domain W3C validator