| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oawordri | Structured version Visualization version Unicode version | ||
| Description: Weak ordering property of ordinal addition. Proposition 8.7 of [TakeutiZaring] p. 59. (Contributed by NM, 7-Dec-2004.) |
| Ref | Expression |
|---|---|
| oawordri |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 6658 |
. . . . 5
| |
| 2 | oveq2 6658 |
. . . . 5
| |
| 3 | 1, 2 | sseq12d 3634 |
. . . 4
|
| 4 | oveq2 6658 |
. . . . 5
| |
| 5 | oveq2 6658 |
. . . . 5
| |
| 6 | 4, 5 | sseq12d 3634 |
. . . 4
|
| 7 | oveq2 6658 |
. . . . 5
| |
| 8 | oveq2 6658 |
. . . . 5
| |
| 9 | 7, 8 | sseq12d 3634 |
. . . 4
|
| 10 | oveq2 6658 |
. . . . 5
| |
| 11 | oveq2 6658 |
. . . . 5
| |
| 12 | 10, 11 | sseq12d 3634 |
. . . 4
|
| 13 | oa0 7596 |
. . . . . . 7
| |
| 14 | 13 | adantr 481 |
. . . . . 6
|
| 15 | oa0 7596 |
. . . . . . 7
| |
| 16 | 15 | adantl 482 |
. . . . . 6
|
| 17 | 14, 16 | sseq12d 3634 |
. . . . 5
|
| 18 | 17 | biimpar 502 |
. . . 4
|
| 19 | oacl 7615 |
. . . . . . . . . . 11
| |
| 20 | eloni 5733 |
. . . . . . . . . . 11
| |
| 21 | 19, 20 | syl 17 |
. . . . . . . . . 10
|
| 22 | oacl 7615 |
. . . . . . . . . . 11
| |
| 23 | eloni 5733 |
. . . . . . . . . . 11
| |
| 24 | 22, 23 | syl 17 |
. . . . . . . . . 10
|
| 25 | ordsucsssuc 7023 |
. . . . . . . . . 10
| |
| 26 | 21, 24, 25 | syl2an 494 |
. . . . . . . . 9
|
| 27 | 26 | anandirs 874 |
. . . . . . . 8
|
| 28 | oasuc 7604 |
. . . . . . . . . 10
| |
| 29 | 28 | adantlr 751 |
. . . . . . . . 9
|
| 30 | oasuc 7604 |
. . . . . . . . . 10
| |
| 31 | 30 | adantll 750 |
. . . . . . . . 9
|
| 32 | 29, 31 | sseq12d 3634 |
. . . . . . . 8
|
| 33 | 27, 32 | bitr4d 271 |
. . . . . . 7
|
| 34 | 33 | biimpd 219 |
. . . . . 6
|
| 35 | 34 | expcom 451 |
. . . . 5
|
| 36 | 35 | adantrd 484 |
. . . 4
|
| 37 | vex 3203 |
. . . . . . 7
| |
| 38 | ss2iun 4536 |
. . . . . . . 8
| |
| 39 | oalim 7612 |
. . . . . . . . . 10
| |
| 40 | 39 | adantlr 751 |
. . . . . . . . 9
|
| 41 | oalim 7612 |
. . . . . . . . . 10
| |
| 42 | 41 | adantll 750 |
. . . . . . . . 9
|
| 43 | 40, 42 | sseq12d 3634 |
. . . . . . . 8
|
| 44 | 38, 43 | syl5ibr 236 |
. . . . . . 7
|
| 45 | 37, 44 | mpanr1 719 |
. . . . . 6
|
| 46 | 45 | expcom 451 |
. . . . 5
|
| 47 | 46 | adantrd 484 |
. . . 4
|
| 48 | 3, 6, 9, 12, 18, 36, 47 | tfinds3 7064 |
. . 3
|
| 49 | 48 | exp4c 636 |
. 2
|
| 50 | 49 | 3imp231 1258 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-oadd 7564 |
| This theorem is referenced by: oaword2 7633 omwordri 7652 oaabs2 7725 |
| Copyright terms: Public domain | W3C validator |