MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsum2d Structured version   Visualization version   Unicode version

Theorem gsum2d 18371
Description: Write a sum over a two-dimensional region as a double sum. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by AV, 8-Jun-2019.)
Hypotheses
Ref Expression
gsum2d.b  |-  B  =  ( Base `  G
)
gsum2d.z  |-  .0.  =  ( 0g `  G )
gsum2d.g  |-  ( ph  ->  G  e. CMnd )
gsum2d.a  |-  ( ph  ->  A  e.  V )
gsum2d.r  |-  ( ph  ->  Rel  A )
gsum2d.d  |-  ( ph  ->  D  e.  W )
gsum2d.s  |-  ( ph  ->  dom  A  C_  D
)
gsum2d.f  |-  ( ph  ->  F : A --> B )
gsum2d.w  |-  ( ph  ->  F finSupp  .0.  )
Assertion
Ref Expression
gsum2d  |-  ( ph  ->  ( G  gsumg  F )  =  ( G  gsumg  ( j  e.  D  |->  ( G  gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) ) )
Distinct variable groups:    j, k, A    j, F, k    j, G, k    ph, j, k    B, j, k    D, j, k    .0. , j, k
Allowed substitution hints:    V( j, k)    W( j, k)

Proof of Theorem gsum2d
StepHypRef Expression
1 gsum2d.b . . 3  |-  B  =  ( Base `  G
)
2 gsum2d.z . . 3  |-  .0.  =  ( 0g `  G )
3 gsum2d.g . . 3  |-  ( ph  ->  G  e. CMnd )
4 gsum2d.a . . 3  |-  ( ph  ->  A  e.  V )
5 gsum2d.r . . 3  |-  ( ph  ->  Rel  A )
6 gsum2d.d . . 3  |-  ( ph  ->  D  e.  W )
7 gsum2d.s . . 3  |-  ( ph  ->  dom  A  C_  D
)
8 gsum2d.f . . 3  |-  ( ph  ->  F : A --> B )
9 gsum2d.w . . 3  |-  ( ph  ->  F finSupp  .0.  )
101, 2, 3, 4, 5, 6, 7, 8, 9gsum2dlem2 18370 . 2  |-  ( ph  ->  ( G  gsumg  ( F  |`  ( A  |`  dom  ( F supp 
.0.  ) ) ) )  =  ( G 
gsumg  ( j  e.  dom  ( F supp  .0.  )  |->  ( G  gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) ) )
11 suppssdm 7308 . . . . . 6  |-  ( F supp 
.0.  )  C_  dom  F
12 fdm 6051 . . . . . . 7  |-  ( F : A --> B  ->  dom  F  =  A )
138, 12syl 17 . . . . . 6  |-  ( ph  ->  dom  F  =  A )
1411, 13syl5sseq 3653 . . . . 5  |-  ( ph  ->  ( F supp  .0.  )  C_  A )
15 relss 5206 . . . . . . 7  |-  ( ( F supp  .0.  )  C_  A  ->  ( Rel  A  ->  Rel  ( F supp  .0.  ) ) )
1614, 5, 15sylc 65 . . . . . 6  |-  ( ph  ->  Rel  ( F supp  .0.  ) )
17 relssdmrn 5656 . . . . . . 7  |-  ( Rel  ( F supp  .0.  )  ->  ( F supp  .0.  )  C_  ( dom  ( F supp 
.0.  )  X.  ran  ( F supp  .0.  ) ) )
18 ssv 3625 . . . . . . . 8  |-  ran  ( F supp  .0.  )  C_  _V
19 xpss2 5229 . . . . . . . 8  |-  ( ran  ( F supp  .0.  )  C_ 
_V  ->  ( dom  ( F supp  .0.  )  X.  ran  ( F supp  .0.  ) ) 
C_  ( dom  ( F supp  .0.  )  X.  _V ) )
2018, 19ax-mp 5 . . . . . . 7  |-  ( dom  ( F supp  .0.  )  X.  ran  ( F supp  .0.  ) )  C_  ( dom  ( F supp  .0.  )  X.  _V )
2117, 20syl6ss 3615 . . . . . 6  |-  ( Rel  ( F supp  .0.  )  ->  ( F supp  .0.  )  C_  ( dom  ( F supp 
.0.  )  X.  _V ) )
2216, 21syl 17 . . . . 5  |-  ( ph  ->  ( F supp  .0.  )  C_  ( dom  ( F supp 
.0.  )  X.  _V ) )
2314, 22ssind 3837 . . . 4  |-  ( ph  ->  ( F supp  .0.  )  C_  ( A  i^i  ( dom  ( F supp  .0.  )  X.  _V ) ) )
24 df-res 5126 . . . 4  |-  ( A  |`  dom  ( F supp  .0.  ) )  =  ( A  i^i  ( dom  ( F supp  .0.  )  X.  _V ) )
2523, 24syl6sseqr 3652 . . 3  |-  ( ph  ->  ( F supp  .0.  )  C_  ( A  |`  dom  ( F supp  .0.  ) ) )
261, 2, 3, 4, 8, 25, 9gsumres 18314 . 2  |-  ( ph  ->  ( G  gsumg  ( F  |`  ( A  |`  dom  ( F supp 
.0.  ) ) ) )  =  ( G 
gsumg  F ) )
27 dmss 5323 . . . . . . 7  |-  ( ( F supp  .0.  )  C_  A  ->  dom  ( F supp  .0.  )  C_  dom  A )
2814, 27syl 17 . . . . . 6  |-  ( ph  ->  dom  ( F supp  .0.  )  C_  dom  A )
2928, 7sstrd 3613 . . . . 5  |-  ( ph  ->  dom  ( F supp  .0.  )  C_  D )
3029resmptd 5452 . . . 4  |-  ( ph  ->  ( ( j  e.  D  |->  ( G  gsumg  ( k  e.  ( A " { j } ) 
|->  ( j F k ) ) ) )  |`  dom  ( F supp  .0.  ) )  =  ( j  e.  dom  ( F supp  .0.  )  |->  ( G 
gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) )
3130oveq2d 6666 . . 3  |-  ( ph  ->  ( G  gsumg  ( ( j  e.  D  |->  ( G  gsumg  ( k  e.  ( A " { j } ) 
|->  ( j F k ) ) ) )  |`  dom  ( F supp  .0.  ) ) )  =  ( G  gsumg  ( j  e.  dom  ( F supp  .0.  )  |->  ( G  gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) ) )
321, 2, 3, 4, 5, 6, 7, 8, 9gsum2dlem1 18369 . . . . . 6  |-  ( ph  ->  ( G  gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) )  e.  B )
3332adantr 481 . . . . 5  |-  ( (
ph  /\  j  e.  D )  ->  ( G  gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) )  e.  B )
34 eqid 2622 . . . . 5  |-  ( j  e.  D  |->  ( G 
gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) )  =  ( j  e.  D  |->  ( G  gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) )
3533, 34fmptd 6385 . . . 4  |-  ( ph  ->  ( j  e.  D  |->  ( G  gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) : D --> B )
36 vex 3203 . . . . . . . . . . . . . 14  |-  j  e. 
_V
37 vex 3203 . . . . . . . . . . . . . 14  |-  k  e. 
_V
3836, 37elimasn 5490 . . . . . . . . . . . . 13  |-  ( k  e.  ( A " { j } )  <->  <. j ,  k >.  e.  A )
3938biimpi 206 . . . . . . . . . . . 12  |-  ( k  e.  ( A " { j } )  ->  <. j ,  k
>.  e.  A )
4039ad2antll 765 . . . . . . . . . . 11  |-  ( (
ph  /\  ( j  e.  ( D  \  dom  ( F supp  .0.  ) )  /\  k  e.  ( A " { j } ) ) )  ->  <. j ,  k
>.  e.  A )
41 eldifn 3733 . . . . . . . . . . . . 13  |-  ( j  e.  ( D  \  dom  ( F supp  .0.  )
)  ->  -.  j  e.  dom  ( F supp  .0.  ) )
4241ad2antrl 764 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( j  e.  ( D  \  dom  ( F supp  .0.  ) )  /\  k  e.  ( A " { j } ) ) )  ->  -.  j  e.  dom  ( F supp  .0.  )
)
4336, 37opeldm 5328 . . . . . . . . . . . 12  |-  ( <.
j ,  k >.  e.  ( F supp  .0.  )  ->  j  e.  dom  ( F supp  .0.  ) )
4442, 43nsyl 135 . . . . . . . . . . 11  |-  ( (
ph  /\  ( j  e.  ( D  \  dom  ( F supp  .0.  ) )  /\  k  e.  ( A " { j } ) ) )  ->  -.  <. j ,  k >.  e.  ( F supp  .0.  ) )
4540, 44eldifd 3585 . . . . . . . . . 10  |-  ( (
ph  /\  ( j  e.  ( D  \  dom  ( F supp  .0.  ) )  /\  k  e.  ( A " { j } ) ) )  ->  <. j ,  k
>.  e.  ( A  \ 
( F supp  .0.  )
) )
46 df-ov 6653 . . . . . . . . . . 11  |-  ( j F k )  =  ( F `  <. j ,  k >. )
47 ssid 3624 . . . . . . . . . . . . 13  |-  ( F supp 
.0.  )  C_  ( F supp  .0.  )
4847a1i 11 . . . . . . . . . . . 12  |-  ( ph  ->  ( F supp  .0.  )  C_  ( F supp  .0.  )
)
49 fvex 6201 . . . . . . . . . . . . . 14  |-  ( 0g
`  G )  e. 
_V
502, 49eqeltri 2697 . . . . . . . . . . . . 13  |-  .0.  e.  _V
5150a1i 11 . . . . . . . . . . . 12  |-  ( ph  ->  .0.  e.  _V )
528, 48, 4, 51suppssr 7326 . . . . . . . . . . 11  |-  ( (
ph  /\  <. j ,  k >.  e.  ( A  \  ( F supp  .0.  ) ) )  -> 
( F `  <. j ,  k >. )  =  .0.  )
5346, 52syl5eq 2668 . . . . . . . . . 10  |-  ( (
ph  /\  <. j ,  k >.  e.  ( A  \  ( F supp  .0.  ) ) )  -> 
( j F k )  =  .0.  )
5445, 53syldan 487 . . . . . . . . 9  |-  ( (
ph  /\  ( j  e.  ( D  \  dom  ( F supp  .0.  ) )  /\  k  e.  ( A " { j } ) ) )  ->  ( j F k )  =  .0.  )
5554anassrs 680 . . . . . . . 8  |-  ( ( ( ph  /\  j  e.  ( D  \  dom  ( F supp  .0.  ) ) )  /\  k  e.  ( A " {
j } ) )  ->  ( j F k )  =  .0.  )
5655mpteq2dva 4744 . . . . . . 7  |-  ( (
ph  /\  j  e.  ( D  \  dom  ( F supp  .0.  ) ) )  ->  ( k  e.  ( A " {
j } )  |->  ( j F k ) )  =  ( k  e.  ( A " { j } ) 
|->  .0.  ) )
5756oveq2d 6666 . . . . . 6  |-  ( (
ph  /\  j  e.  ( D  \  dom  ( F supp  .0.  ) ) )  ->  ( G  gsumg  ( k  e.  ( A " { j } ) 
|->  ( j F k ) ) )  =  ( G  gsumg  ( k  e.  ( A " { j } )  |->  .0.  )
) )
58 cmnmnd 18208 . . . . . . . . 9  |-  ( G  e. CMnd  ->  G  e.  Mnd )
593, 58syl 17 . . . . . . . 8  |-  ( ph  ->  G  e.  Mnd )
60 imaexg 7103 . . . . . . . . 9  |-  ( A  e.  V  ->  ( A " { j } )  e.  _V )
614, 60syl 17 . . . . . . . 8  |-  ( ph  ->  ( A " {
j } )  e. 
_V )
622gsumz 17374 . . . . . . . 8  |-  ( ( G  e.  Mnd  /\  ( A " { j } )  e.  _V )  ->  ( G  gsumg  ( k  e.  ( A " { j } ) 
|->  .0.  ) )  =  .0.  )
6359, 61, 62syl2anc 693 . . . . . . 7  |-  ( ph  ->  ( G  gsumg  ( k  e.  ( A " { j } )  |->  .0.  )
)  =  .0.  )
6463adantr 481 . . . . . 6  |-  ( (
ph  /\  j  e.  ( D  \  dom  ( F supp  .0.  ) ) )  ->  ( G  gsumg  ( k  e.  ( A " { j } ) 
|->  .0.  ) )  =  .0.  )
6557, 64eqtrd 2656 . . . . 5  |-  ( (
ph  /\  j  e.  ( D  \  dom  ( F supp  .0.  ) ) )  ->  ( G  gsumg  ( k  e.  ( A " { j } ) 
|->  ( j F k ) ) )  =  .0.  )
6665, 6suppss2 7329 . . . 4  |-  ( ph  ->  ( ( j  e.  D  |->  ( G  gsumg  ( k  e.  ( A " { j } ) 
|->  ( j F k ) ) ) ) supp 
.0.  )  C_  dom  ( F supp  .0.  ) )
67 funmpt 5926 . . . . . 6  |-  Fun  (
j  e.  D  |->  ( G  gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) )
6867a1i 11 . . . . 5  |-  ( ph  ->  Fun  ( j  e.  D  |->  ( G  gsumg  ( k  e.  ( A " { j } ) 
|->  ( j F k ) ) ) ) )
699fsuppimpd 8282 . . . . . . 7  |-  ( ph  ->  ( F supp  .0.  )  e.  Fin )
70 dmfi 8244 . . . . . . 7  |-  ( ( F supp  .0.  )  e.  Fin  ->  dom  ( F supp  .0.  )  e.  Fin )
7169, 70syl 17 . . . . . 6  |-  ( ph  ->  dom  ( F supp  .0.  )  e.  Fin )
72 ssfi 8180 . . . . . 6  |-  ( ( dom  ( F supp  .0.  )  e.  Fin  /\  (
( j  e.  D  |->  ( G  gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) supp  .0.  )  C_ 
dom  ( F supp  .0.  ) )  ->  (
( j  e.  D  |->  ( G  gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) supp  .0.  )  e.  Fin )
7371, 66, 72syl2anc 693 . . . . 5  |-  ( ph  ->  ( ( j  e.  D  |->  ( G  gsumg  ( k  e.  ( A " { j } ) 
|->  ( j F k ) ) ) ) supp 
.0.  )  e.  Fin )
74 mptexg 6484 . . . . . . 7  |-  ( D  e.  W  ->  (
j  e.  D  |->  ( G  gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) )  e.  _V )
756, 74syl 17 . . . . . 6  |-  ( ph  ->  ( j  e.  D  |->  ( G  gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) )  e.  _V )
76 isfsupp 8279 . . . . . 6  |-  ( ( ( j  e.  D  |->  ( G  gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) )  e.  _V  /\  .0.  e.  _V )  ->  ( ( j  e.  D  |->  ( G  gsumg  ( k  e.  ( A " { j } ) 
|->  ( j F k ) ) ) ) finSupp  .0. 
<->  ( Fun  ( j  e.  D  |->  ( G 
gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) )  /\  (
( j  e.  D  |->  ( G  gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) supp  .0.  )  e.  Fin ) ) )
7775, 51, 76syl2anc 693 . . . . 5  |-  ( ph  ->  ( ( j  e.  D  |->  ( G  gsumg  ( k  e.  ( A " { j } ) 
|->  ( j F k ) ) ) ) finSupp  .0. 
<->  ( Fun  ( j  e.  D  |->  ( G 
gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) )  /\  (
( j  e.  D  |->  ( G  gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) supp  .0.  )  e.  Fin ) ) )
7868, 73, 77mpbir2and 957 . . . 4  |-  ( ph  ->  ( j  e.  D  |->  ( G  gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) finSupp  .0.  )
791, 2, 3, 6, 35, 66, 78gsumres 18314 . . 3  |-  ( ph  ->  ( G  gsumg  ( ( j  e.  D  |->  ( G  gsumg  ( k  e.  ( A " { j } ) 
|->  ( j F k ) ) ) )  |`  dom  ( F supp  .0.  ) ) )  =  ( G  gsumg  ( j  e.  D  |->  ( G  gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) ) )
8031, 79eqtr3d 2658 . 2  |-  ( ph  ->  ( G  gsumg  ( j  e.  dom  ( F supp  .0.  )  |->  ( G  gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) )  =  ( G  gsumg  ( j  e.  D  |->  ( G  gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) ) )
8110, 26, 803eqtr3d 2664 1  |-  ( ph  ->  ( G  gsumg  F )  =  ( G  gsumg  ( j  e.  D  |->  ( G  gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    \ cdif 3571    i^i cin 3573    C_ wss 3574   {csn 4177   <.cop 4183   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112   dom cdm 5114   ran crn 5115    |` cres 5116   "cima 5117   Rel wrel 5119   Fun wfun 5882   -->wf 5884   ` cfv 5888  (class class class)co 6650   supp csupp 7295   Fincfn 7955   finSupp cfsupp 8275   Basecbs 15857   0gc0g 16100    gsumg cgsu 16101   Mndcmnd 17294  CMndccmn 18193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-gsum 16103  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195
This theorem is referenced by:  gsum2d2  18373  gsumxp  18375
  Copyright terms: Public domain W3C validator