Proof of Theorem gsum2d
| Step | Hyp | Ref
| Expression |
| 1 | | gsum2d.b |
. . 3
     |
| 2 | | gsum2d.z |
. . 3
     |
| 3 | | gsum2d.g |
. . 3
 CMnd |
| 4 | | gsum2d.a |
. . 3
   |
| 5 | | gsum2d.r |
. . 3
   |
| 6 | | gsum2d.d |
. . 3
   |
| 7 | | gsum2d.s |
. . 3
   |
| 8 | | gsum2d.f |
. . 3
       |
| 9 | | gsum2d.w |
. . 3
 finSupp
 |
| 10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | gsum2dlem2 18370 |
. 2
  g    supp     g  
supp  g                  |
| 11 | | suppssdm 7308 |
. . . . . 6
 supp  |
| 12 | | fdm 6051 |
. . . . . . 7
       |
| 13 | 8, 12 | syl 17 |
. . . . . 6
   |
| 14 | 11, 13 | syl5sseq 3653 |
. . . . 5
  supp   |
| 15 | | relss 5206 |
. . . . . . 7
  supp
  supp    |
| 16 | 14, 5, 15 | sylc 65 |
. . . . . 6
  supp   |
| 17 | | relssdmrn 5656 |
. . . . . . 7
  supp  supp   supp 
supp    |
| 18 | | ssv 3625 |
. . . . . . . 8
 supp  |
| 19 | | xpss2 5229 |
. . . . . . . 8
  supp   supp 
supp    supp    |
| 20 | 18, 19 | ax-mp 5 |
. . . . . . 7
  supp  supp    supp   |
| 21 | 17, 20 | syl6ss 3615 |
. . . . . 6
  supp  supp   supp    |
| 22 | 16, 21 | syl 17 |
. . . . 5
  supp   supp    |
| 23 | 14, 22 | ssind 3837 |
. . . 4
  supp    supp     |
| 24 | | df-res 5126 |
. . . 4
  supp     supp    |
| 25 | 23, 24 | syl6sseqr 3652 |
. . 3
  supp   supp    |
| 26 | 1, 2, 3, 4, 8, 25,
9 | gsumres 18314 |
. 2
  g    supp     g    |
| 27 | | dmss 5323 |
. . . . . . 7
  supp
 supp
  |
| 28 | 14, 27 | syl 17 |
. . . . . 6
  supp   |
| 29 | 28, 7 | sstrd 3613 |
. . . . 5
  supp   |
| 30 | 29 | resmptd 5452 |
. . . 4
    g                supp    supp  g                 |
| 31 | 30 | oveq2d 6666 |
. . 3
  g    g                supp    g  
supp  g                  |
| 32 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | gsum2dlem1 18369 |
. . . . . 6
  g                |
| 33 | 32 | adantr 481 |
. . . . 5
 
  g                |
| 34 | | eqid 2622 |
. . . . 5
  g                 g                |
| 35 | 33, 34 | fmptd 6385 |
. . . 4
   g                     |
| 36 | | vex 3203 |
. . . . . . . . . . . . . 14
 |
| 37 | | vex 3203 |
. . . . . . . . . . . . . 14
 |
| 38 | 36, 37 | elimasn 5490 |
. . . . . . . . . . . . 13
            |
| 39 | 38 | biimpi 206 |
. . . . . . . . . . . 12
            |
| 40 | 39 | ad2antll 765 |
. . . . . . . . . . 11
 
  
supp               |
| 41 | | eldifn 3733 |
. . . . . . . . . . . . 13
   supp 
 supp   |
| 42 | 41 | ad2antrl 764 |
. . . . . . . . . . . 12
 
  
supp         
 supp   |
| 43 | 36, 37 | opeldm 5328 |
. . . . . . . . . . . 12
     supp  supp   |
| 44 | 42, 43 | nsyl 135 |
. . . . . . . . . . 11
 
  
supp         
  
 supp   |
| 45 | 40, 44 | eldifd 3585 |
. . . . . . . . . 10
 
  
supp               supp
   |
| 46 | | df-ov 6653 |
. . . . . . . . . . 11
            |
| 47 | | ssid 3624 |
. . . . . . . . . . . . 13
 supp  supp  |
| 48 | 47 | a1i 11 |
. . . . . . . . . . . 12
  supp  supp   |
| 49 | | fvex 6201 |
. . . . . . . . . . . . . 14
     |
| 50 | 2, 49 | eqeltri 2697 |
. . . . . . . . . . . . 13
 |
| 51 | 50 | a1i 11 |
. . . . . . . . . . . 12
   |
| 52 | 8, 48, 4, 51 | suppssr 7326 |
. . . . . . . . . . 11
 
  
  supp           |
| 53 | 46, 52 | syl5eq 2668 |
. . . . . . . . . 10
 
  
  supp        |
| 54 | 45, 53 | syldan 487 |
. . . . . . . . 9
 
  
supp               |
| 55 | 54 | anassrs 680 |
. . . . . . . 8
    
supp               |
| 56 | 55 | mpteq2dva 4744 |
. . . . . . 7
 

 supp                        |
| 57 | 56 | oveq2d 6666 |
. . . . . 6
 

 supp    g               g           |
| 58 | | cmnmnd 18208 |
. . . . . . . . 9
 CMnd   |
| 59 | 3, 58 | syl 17 |
. . . . . . . 8
   |
| 60 | | imaexg 7103 |
. . . . . . . . 9
         |
| 61 | 4, 60 | syl 17 |
. . . . . . . 8
         |
| 62 | 2 | gsumz 17374 |
. . . . . . . 8
          g          |
| 63 | 59, 61, 62 | syl2anc 693 |
. . . . . . 7
  g          |
| 64 | 63 | adantr 481 |
. . . . . 6
 

 supp    g          |
| 65 | 57, 64 | eqtrd 2656 |
. . . . 5
 

 supp    g               |
| 66 | 65, 6 | suppss2 7329 |
. . . 4
    g               supp 
supp   |
| 67 | | funmpt 5926 |
. . . . . 6
  g                |
| 68 | 67 | a1i 11 |
. . . . 5
   g                 |
| 69 | 9 | fsuppimpd 8282 |
. . . . . . 7
  supp   |
| 70 | | dmfi 8244 |
. . . . . . 7
  supp
 supp   |
| 71 | 69, 70 | syl 17 |
. . . . . 6
  supp
  |
| 72 | | ssfi 8180 |
. . . . . 6
   supp
   g               supp  supp     g               supp   |
| 73 | 71, 66, 72 | syl2anc 693 |
. . . . 5
    g               supp   |
| 74 | | mptexg 6484 |
. . . . . . 7
   g                 |
| 75 | 6, 74 | syl 17 |
. . . . . 6
   g                 |
| 76 | | isfsupp 8279 |
. . . . . 6
    g                   g               finSupp    g                  g               supp     |
| 77 | 75, 51, 76 | syl2anc 693 |
. . . . 5
    g               finSupp    g                  g               supp     |
| 78 | 68, 73, 77 | mpbir2and 957 |
. . . 4
   g               finSupp  |
| 79 | 1, 2, 3, 6, 35, 66, 78 | gsumres 18314 |
. . 3
  g    g                supp    g   g                  |
| 80 | 31, 79 | eqtr3d 2658 |
. 2
  g  
supp  g                 g   g                  |
| 81 | 10, 26, 80 | 3eqtr3d 2664 |
1
  g   g   g                  |