| Mathbox for Chen-Pang He |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ordtoplem | Structured version Visualization version Unicode version | ||
| Description: Membership of the class of successor ordinals. (Contributed by Chen-Pang He, 1-Nov-2015.) |
| Ref | Expression |
|---|---|
| ordtoplem.1 |
|
| Ref | Expression |
|---|---|
| ordtoplem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2795 |
. 2
| |
| 2 | ordeleqon 6988 |
. . . . . 6
| |
| 3 | unon 7031 |
. . . . . . . . 9
| |
| 4 | 3 | eqcomi 2631 |
. . . . . . . 8
|
| 5 | id 22 |
. . . . . . . 8
| |
| 6 | unieq 4444 |
. . . . . . . 8
| |
| 7 | 4, 5, 6 | 3eqtr4a 2682 |
. . . . . . 7
|
| 8 | 7 | orim2i 540 |
. . . . . 6
|
| 9 | 2, 8 | sylbi 207 |
. . . . 5
|
| 10 | 9 | orcomd 403 |
. . . 4
|
| 11 | 10 | ord 392 |
. . 3
|
| 12 | orduniorsuc 7030 |
. . . 4
| |
| 13 | 12 | ord 392 |
. . 3
|
| 14 | onuni 6993 |
. . . 4
| |
| 15 | ordtoplem.1 |
. . . 4
| |
| 16 | eleq1a 2696 |
. . . 4
| |
| 17 | 14, 15, 16 | 3syl 18 |
. . 3
|
| 18 | 11, 13, 17 | syl6c 70 |
. 2
|
| 19 | 1, 18 | syl5bi 232 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-tr 4753 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-ord 5726 df-on 5727 df-suc 5729 |
| This theorem is referenced by: ordtop 32435 ordtopconn 32438 ordtopt0 32441 |
| Copyright terms: Public domain | W3C validator |