MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unon Structured version   Visualization version   Unicode version

Theorem unon 7031
Description: The class of all ordinal numbers is its own union. Exercise 11 of [TakeutiZaring] p. 40. (Contributed by NM, 12-Nov-2003.)
Assertion
Ref Expression
unon  |-  U. On  =  On

Proof of Theorem unon
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluni2 4440 . . . 4  |-  ( x  e.  U. On  <->  E. y  e.  On  x  e.  y )
2 onelon 5748 . . . . 5  |-  ( ( y  e.  On  /\  x  e.  y )  ->  x  e.  On )
32rexlimiva 3028 . . . 4  |-  ( E. y  e.  On  x  e.  y  ->  x  e.  On )
41, 3sylbi 207 . . 3  |-  ( x  e.  U. On  ->  x  e.  On )
5 vex 3203 . . . . 5  |-  x  e. 
_V
65sucid 5804 . . . 4  |-  x  e. 
suc  x
7 suceloni 7013 . . . 4  |-  ( x  e.  On  ->  suc  x  e.  On )
8 elunii 4441 . . . 4  |-  ( ( x  e.  suc  x  /\  suc  x  e.  On )  ->  x  e.  U. On )
96, 7, 8sylancr 695 . . 3  |-  ( x  e.  On  ->  x  e.  U. On )
104, 9impbii 199 . 2  |-  ( x  e.  U. On  <->  x  e.  On )
1110eqriv 2619 1  |-  U. On  =  On
Colors of variables: wff setvar class
Syntax hints:    = wceq 1483    e. wcel 1990   E.wrex 2913   U.cuni 4436   Oncon0 5723   suc csuc 5725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-ord 5726  df-on 5727  df-suc 5729
This theorem is referenced by:  ordunisuc  7032  limon  7036  orduninsuc  7043  ordtoplem  32434  ordcmp  32446
  Copyright terms: Public domain W3C validator