Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  osumcllem3N Structured version   Visualization version   Unicode version

Theorem osumcllem3N 35244
Description: Lemma for osumclN 35253. (Contributed by NM, 23-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
osumcllem.l  |-  .<_  =  ( le `  K )
osumcllem.j  |-  .\/  =  ( join `  K )
osumcllem.a  |-  A  =  ( Atoms `  K )
osumcllem.p  |-  .+  =  ( +P `  K
)
osumcllem.o  |-  ._|_  =  ( _|_P `  K
)
osumcllem.c  |-  C  =  ( PSubCl `  K )
osumcllem.m  |-  M  =  ( X  .+  {
p } )
osumcllem.u  |-  U  =  (  ._|_  `  (  ._|_  `  ( X  .+  Y
) ) )
Assertion
Ref Expression
osumcllem3N  |-  ( ( K  e.  HL  /\  Y  e.  C  /\  X  C_  (  ._|_  `  Y
) )  ->  (
(  ._|_  `  X )  i^i  U )  =  Y )

Proof of Theorem osumcllem3N
StepHypRef Expression
1 incom 3805 . 2  |-  ( ( 
._|_  `  X )  i^i 
U )  =  ( U  i^i  (  ._|_  `  X ) )
2 osumcllem.u . . . . 5  |-  U  =  (  ._|_  `  (  ._|_  `  ( X  .+  Y
) ) )
3 simp1 1061 . . . . . . . 8  |-  ( ( K  e.  HL  /\  Y  e.  C  /\  X  C_  (  ._|_  `  Y
) )  ->  K  e.  HL )
4 simp3 1063 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  Y  e.  C  /\  X  C_  (  ._|_  `  Y
) )  ->  X  C_  (  ._|_  `  Y ) )
5 osumcllem.a . . . . . . . . . . . 12  |-  A  =  ( Atoms `  K )
6 osumcllem.c . . . . . . . . . . . 12  |-  C  =  ( PSubCl `  K )
75, 6psubclssatN 35227 . . . . . . . . . . 11  |-  ( ( K  e.  HL  /\  Y  e.  C )  ->  Y  C_  A )
873adant3 1081 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  Y  e.  C  /\  X  C_  (  ._|_  `  Y
) )  ->  Y  C_  A )
9 osumcllem.o . . . . . . . . . . 11  |-  ._|_  =  ( _|_P `  K
)
105, 9polssatN 35194 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  Y  C_  A )  -> 
(  ._|_  `  Y )  C_  A )
113, 8, 10syl2anc 693 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  Y  e.  C  /\  X  C_  (  ._|_  `  Y
) )  ->  (  ._|_  `  Y )  C_  A )
124, 11sstrd 3613 . . . . . . . 8  |-  ( ( K  e.  HL  /\  Y  e.  C  /\  X  C_  (  ._|_  `  Y
) )  ->  X  C_  A )
13 osumcllem.p . . . . . . . . 9  |-  .+  =  ( +P `  K
)
145, 13, 9poldmj1N 35214 . . . . . . . 8  |-  ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  ->  (  ._|_  `  ( X  .+  Y ) )  =  ( (  ._|_  `  X
)  i^i  (  ._|_  `  Y ) ) )
153, 12, 8, 14syl3anc 1326 . . . . . . 7  |-  ( ( K  e.  HL  /\  Y  e.  C  /\  X  C_  (  ._|_  `  Y
) )  ->  (  ._|_  `  ( X  .+  Y ) )  =  ( (  ._|_  `  X
)  i^i  (  ._|_  `  Y ) ) )
16 incom 3805 . . . . . . 7  |-  ( ( 
._|_  `  X )  i^i  (  ._|_  `  Y ) )  =  ( ( 
._|_  `  Y )  i^i  (  ._|_  `  X ) )
1715, 16syl6eq 2672 . . . . . 6  |-  ( ( K  e.  HL  /\  Y  e.  C  /\  X  C_  (  ._|_  `  Y
) )  ->  (  ._|_  `  ( X  .+  Y ) )  =  ( (  ._|_  `  Y
)  i^i  (  ._|_  `  X ) ) )
1817fveq2d 6195 . . . . 5  |-  ( ( K  e.  HL  /\  Y  e.  C  /\  X  C_  (  ._|_  `  Y
) )  ->  (  ._|_  `  (  ._|_  `  ( X  .+  Y ) ) )  =  (  ._|_  `  ( (  ._|_  `  Y
)  i^i  (  ._|_  `  X ) ) ) )
192, 18syl5eq 2668 . . . 4  |-  ( ( K  e.  HL  /\  Y  e.  C  /\  X  C_  (  ._|_  `  Y
) )  ->  U  =  (  ._|_  `  (
(  ._|_  `  Y )  i^i  (  ._|_  `  X
) ) ) )
2019ineq1d 3813 . . 3  |-  ( ( K  e.  HL  /\  Y  e.  C  /\  X  C_  (  ._|_  `  Y
) )  ->  ( U  i^i  (  ._|_  `  X
) )  =  ( (  ._|_  `  ( ( 
._|_  `  Y )  i^i  (  ._|_  `  X ) ) )  i^i  (  ._|_  `  X ) ) )
215, 9polcon2N 35205 . . . . 5  |-  ( ( K  e.  HL  /\  Y  C_  A  /\  X  C_  (  ._|_  `  Y ) )  ->  Y  C_  (  ._|_  `  X ) )
228, 21syld3an2 1373 . . . 4  |-  ( ( K  e.  HL  /\  Y  e.  C  /\  X  C_  (  ._|_  `  Y
) )  ->  Y  C_  (  ._|_  `  X ) )
235, 9poml5N 35240 . . . 4  |-  ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  (  ._|_  `  X ) )  ->  ( (  ._|_  `  ( (  ._|_  `  Y )  i^i  (  ._|_  `  X ) ) )  i^i  (  ._|_  `  X ) )  =  (  ._|_  `  (  ._|_  `  Y ) ) )
243, 12, 22, 23syl3anc 1326 . . 3  |-  ( ( K  e.  HL  /\  Y  e.  C  /\  X  C_  (  ._|_  `  Y
) )  ->  (
(  ._|_  `  ( (  ._|_  `  Y )  i^i  (  ._|_  `  X ) ) )  i^i  (  ._|_  `  X ) )  =  (  ._|_  `  (  ._|_  `  Y ) ) )
259, 6psubcli2N 35225 . . . 4  |-  ( ( K  e.  HL  /\  Y  e.  C )  ->  (  ._|_  `  (  ._|_  `  Y ) )  =  Y )
26253adant3 1081 . . 3  |-  ( ( K  e.  HL  /\  Y  e.  C  /\  X  C_  (  ._|_  `  Y
) )  ->  (  ._|_  `  (  ._|_  `  Y
) )  =  Y )
2720, 24, 263eqtrd 2660 . 2  |-  ( ( K  e.  HL  /\  Y  e.  C  /\  X  C_  (  ._|_  `  Y
) )  ->  ( U  i^i  (  ._|_  `  X
) )  =  Y )
281, 27syl5eq 2668 1  |-  ( ( K  e.  HL  /\  Y  e.  C  /\  X  C_  (  ._|_  `  Y
) )  ->  (
(  ._|_  `  X )  i^i  U )  =  Y )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 1037    = wceq 1483    e. wcel 1990    i^i cin 3573    C_ wss 3574   {csn 4177   ` cfv 5888  (class class class)co 6650   lecple 15948   joincjn 16944   Atomscatm 34550   HLchlt 34637   +Pcpadd 35081   _|_PcpolN 35188   PSubClcpscN 35220
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-riotaBAD 34239
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-undef 7399  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-p1 17040  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-psubsp 34789  df-pmap 34790  df-padd 35082  df-polarityN 35189  df-psubclN 35221
This theorem is referenced by:  osumcllem9N  35250
  Copyright terms: Public domain W3C validator